ユーザーマニュアル

ARP2600 V アープ 2600 V

ご注意

本製品の CD-ROM はオーディオ用ではありません。一般のオーディオ CD プレーヤーでは絶 対に再生しないでください。大音量によって耳を痛めたり、スピーカーを破損する恐れがあ ります。

▲製品の CD-ROM には不正コピーを防止するためのプロテクトがかけられています。お客様が本製品の CD-ROM/ソフトウエアの複製を試みた結果生じた損害についてはアートリア社ならびにアイデックス音楽総研株式会社は一切の責任を負いかねますのでご了承ください。

- 本製品の CD-ROM を損傷したり、破損した場合、修復/交換は有償となりますのでご注意ください。
- 本製品および取扱説明書の著作権はすべてアートリア社が所有します。
- 本製品の CD-ROM を開封する前に、必ず「使用許諾契約書」をお読みください。CD-ROM を開封 した時点で、使用許諾書に記載された事項をご承認いただいたことになります。
- 第三者の著作物(音楽作品、映像作品、放送、公演、その他)の一部または全部を、権利者に無 断で録音し、配布、販売、貸与、公演、放送などを行うことは法律で禁じられています。
- 第三者の著作権を侵害する恐れのある用途に、本製品を使用しないでください。あなたが本製品を用いて他社の著作権を侵害しても、アートリア社ならびにアイデックス音楽総研株式会社は一切責任を負いません。
- 本製品を権利者の許諾無く賃貸業に使用することを禁じます。また無断複製することは法律で禁 じられています。
- ディスクの裏面(信号面)に触れたり、傷を付けたりしないでください。データの読み出しがう まく行かないことがあります。ディスクの汚れは、市販の CD 専用クリーナーでクリーニングし てください。
- 本製品は別途記載の条件を満たす標準的なコンピューターで動作を確認しておりますが、この条件下での動作すべてを保証するものではありません。同一条件下でもコンピューター固有の設計仕様や使用環境の違いにより処理能力が異なることをご了承願います。
- 音楽をお楽しみになる場合は、ヘッドホンをするなどしてご近所に迷惑がかからないようにしま しょう。特に夜間は音量に十分注意してください。

プログラミング:

Nicolas Bronnec Sylvain Gubian Xavier Oudin Cedric Rossi

グラフィック: Yannick Bonnefoy

マニュアル:

Jean-Michel Blanchet Frédéric Brun Tom Healy Cedric Rossi 坂上 暢 佐野 雄二 和久井 健太郎

サウンド・デザイナー:

Jean-Michel Blanchet Celmar Engel Klaus Schulze 氏家 克典 Ruff & Jam Kevin Lamb from Neptunes Chis Pitman Darrell Diaz Glen Darcy Pietro Caramelli 生方 則孝

Very special thanks to:

Celmar Engel, Mark Vail, Alan R. Perlman, Wally Badarou, Chad from Neptunes

Thanks to:

John Leimseder, Matt Lupo, Ron Kuper, Mephistoff Ellys, Pietro Caramelli、多くのβ版テスター、 関係者の皆様 日本語ユーザーマニュアル制作: アイデックス音楽総研株式会社/アイデックス・ミュージック・ソフトウエア 〒111-0051 東京都台東区蔵前 4-21-9 蔵前坂口ビル 7F http://www.idecs.co.jp

© ARTURIA (アートリア) S.A. - 1999-2004 - All rights reserved. 4, Chemin de Malacher 38240 Meylan FRANCE http://www.arturia.com

このマニュアルに記載されている内容は、アートリアからの予告なしに変更することがあります。こ のマニュアルで述べられているソフトウエアは、ライセンス許諾または機密保持契約の元で提供され ます。ソフトウエアのライセンス許諾は、その合法的な使用での期間と条件を明記しています。この マニュアル中の記事、文章を、アートリアの許可なしに、購入者の個人的使用も含むいかなる目的で あっても、無断転載、記載することを禁じます。マニュアル本文内に記載されているその他の商品、 ロゴ、会社名は、各社の商標または登録商標です。

もくじ

1 イント	ロダクション	8
1.1 アー	-プ・シンセサイザー、そして「アープ2600」の誕生	8
1.2 TAE	®技術により忠実なエミュレーションを実現	9
1.2.1	折り返しノイズのないオシレーター	9
1.2.2	アナログ・シンセサイザーがもつ波形のゆらぎを忠実に再現	10
1.2.3	アナログ・フィルターの忠実な再現	11
1.2.4	リング・モジュレーター	12
2 インス	トール	13
2.1 Win	- /* Howe 9x Me 2000 XPでのインストール	13
2.1 Will 2.2 Mar	OS X TOT V	15
2.2 Wat	л. тад—Ь	15
$\frac{3}{21}$		10
3.1 / ; 2.1.1	「ビット自己を使う」	17
3.1.1 20 7	フリビンド目已のエノインド - プ2000 V な様式ナス2 ののセクション	10
3.Z) =	-22000 を 件成 9 $O3^{-2}$ $O7 E 2 = 2$	19
3.3 22		20
3.4 2	-クンサー・セクンヨン	22
3.4.1		22
3.4.2		25
3.5 工)	/エクト・セクション	26
3.5.1	コーフス	27
3.5.2		27
3.6 リフ	「ルタイム・コントローフーとMIDIアサイン	28
4 インタ	ーフェース	29
4.1 プリ	セット音色を使用するには	29
4.1.1	《 BANK 》,《 SUB BANK 》,《 PRESET 》の選択	29
4.1.2	《 BANK 》,《 SUB BANK 》,《 PRESET 》の作成	31
4.1.3	ユーザー・プリセットの保存	31
4.1.4	プリセット・バンクのインポート/エクスポート	32
4.2 パジ	ベル・カラーの変更	32
4.3 コン	、トローラーの使用方法	33
4.3.1	垂直スライダー	33
4.3.2	水平スライダー	33
4.3.3	つまみ	33
4.3.4	セレクター	34
4.3.5	スイッチ	34
4.3.6	ピッチベンド	34
4.4 ケー	-ブルの使用	34
4.4.1	オーディオ接続/モジュレーション接続	35
4.4.2	接続の変更	36
4.4.3	モジュレーション・レベル設定	37
4.4.4	スプリーディング	37
4.4.5	バーチャル・キーボード	37
4.4.6	MIDIコントロール	38
5 モジュ	- <i>i</i> V	39
5.1 サウ	フンド・プログラミング・モジュール(シンセシス・セクション)	39
5.1.1	特徴	39
5.1.2	オシレーター (VCO)	40
513	7×10^{-1}	 ⊿3
514	エンベロープ	46
515	アンプ (VCA)	40 ⊿7
516	ノイズ・ジェネレーター	47 20
517	ボルテージ・プロヤッサー	-+0 ⊿0
0.1.7		T/

5.1.8	サンプル&ホールド・ジェネレーター	49
5.1.9	エレクトロニック・スイッチ(electro switch)	50
5.1.10	エンベロープ・フォロワー	51
5.1.11	リング・モジュレーター	52
5.1.12	トラッキング・ジェネレーター	52
5.1.13	リバーブ	55
5.1.14	コーラス、ディレイ・エフェクト	55
5.1.15	コントローラー(CV control)	56
5.1.16	キーボード・インターフェース (3620タイプ)	57
5.1.17	グローバル・セッティング	57
5.1.18	ロー・フリケンシー・オシレーター(LFO)	58
5.1.19	アープ・シーケンサー	59
6 減算方:	式シンセサイザーの基礎	65
6.1 3つ	の主要なモジュール	65
6.1.1	オシレーター(VCO)	65
6.1.2	フィルター(VCF)	69
6.1.3	アンプ(VCA)	72
6.2 ZO)他のモジュール	73
621	キーボード	73
622	エンベロープ・ジェネレーター(ADSR)	73
623	$p - \cdot \overline{\gamma} + \overline$	73 74
624	$1 \vee \mathcal{J} \cdot J$	76
625	サンプル&ホールド	76
0.2.0 7 サウン	ド・デザインの其礎知識	78
<u>/ ッツン</u> 71 井片		78
7.1 9 9	イント・シン ビンハ	78
7.1.1	間半なパソノマン	70 00
/.I.Z		0Z
712	トラッモング・シーフレーターな油田」をエファクト	×6
7.1.3	トフッキンク・シェネレーターを使用したエフェクト	80 80
7.1.3 7.1.4 7.1.5	トフッキンク・シェネレーターを使用したエフェクト シーケンサーを使ってメロディーを作成	86 89 01
7.1.3 7.1.4 7.1.5	トフッキンク・シェネレーターを使用したエフェクト シーケンサーを使ってメロディーを作成 シーケンサーで変調のパターンをシーケンスする	80 89 91
7.1.3 7.1.4 7.1.5 8 $\mathcal{T} - \mathcal{T}_{2}^{2}$	トラッキンク・シェネレーターを使用したエフェクト シーケンサーを使ってメロディーを作成 シーケンサーで変調のパターンをシーケンスする 2600 Vの様々なモードでの使用方法	86 89 91 93
$7.1.3 \\ 7.1.4 \\ 7.1.5 \\ 8 \ \mathcal{P} - \mathcal{P}_{2}^{\prime} \\ 8.1 \ \mathcal{P}_{3}^{\prime}$	トラッキンク・シェネレーターを使用したエフェクト シーケンサーを使ってメロディーを作成 シーケンサーで変調のパターンをシーケンスする 2600 Vの様々なモードでの使用方法 マンドアローン・モードで使用する	86 89 91 93 93
7.1.3 7.1.4 7.1.5 8 アープ2 8.1 スタ 8.1.1	トラッキンク・シェネレーターを使用したエフェクト シーケンサーを使ってメロディーを作成 シーケンサーで変調のパターンをシーケンスする 2600 Vの様々なモードでの使用方法 マンドアローン・モードで使用する アプリケーションを立ち上げる	86 89 91 93 93 93
7.1.3 7.1.4 7.1.5 8 $\mathcal{T} - \mathcal{T}_{4}^{2}$ 8.1 \mathcal{R}_{5}^{3} 8.1.1 8.1.2 8.1.2	トラッキンク・シェネレーターを使用したエフェクト シーケンサーを使ってメロディーを作成 シーケンサーで変調のパターンをシーケンスする 2000 Vの様々なモードでの使用方法 マンドアローン・モードで使用する アプリケーションを立ち上げる 初期設定の変更	86 89 91 93 93 93 93
7.1.3 7.1.4 7.1.5 8 $\mathcal{P} - \mathcal{P}_{2}^{\prime}$ 8.1 $\mathcal{Z} \mathcal{F}$ 8.1.1 8.1.2 8.1.3 9.1.4	トラッキンク・シェネレーターを使用したエフェクト シーケンサーを使ってメロディーを作成 シーケンサーで変調のパターンをシーケンスする 2600 Vの様々なモードでの使用方法 マプリケーションを立ち上げる 初期設定の変更 コントロール・バー	86 89 91 93 93 93 93 94
7.1.3 7.1.4 7.1.5 8 $\mathcal{P} - \mathcal{P}_{2}^{2}$ 8.1 \mathcal{Z}_{3}^{3} 8.1.1 8.1.2 8.1.3 8.1.4 8.1.4	トラッキンク・シェネレーターを使用したエフェクト シーケンサーを使ってメロディーを作成 シーケンサーで変調のパターンをシーケンスする 2600 Vの様々なモードでの使用方法 マンドアローン・モードで使用する アプリケーションを立ち上げる 初期設定の変更 コントロール・バー CPU使用率について	86 89 91 93 93 93 93 93 94 95
7.1.3 7.1.4 7.1.5 8 $\mathcal{P} - \mathcal{P}_{2}^{2}$ 8.1 \mathcal{R}_{3}^{3} 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5	トラッキンク・シェネレーターを使用したエフェクト シーケンサーを使ってメロディーを作成 シーケンサーで変調のパターンをシーケンスする 2000 Vの様々なモードでの使用方法 マンドアローン・モードで使用する アプリケーションを立ち上げる 初期設定の変更 コントロール・バー CPU使用率について パニック機能	86 89 91 93 93 93 93 93 94 95 96
7.1.3 7.1.4 7.1.5 8 $\mathcal{T} - \mathcal{T}_{2}^{2}$ 8.1 \mathcal{R}_{3}^{2} 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6	トラッキンク・シェネレーターを使用したエフェクト シーケンサーを使ってメロディーを作成 シーケンサーで変調のパターンをシーケンスする 2000 Vの様々なモードでの使用方法 マプリケーションを立ち上げる 初期設定の変更 コントロール・バー CPU使用率について パニック機能 インストゥルメントの保存	86 89 91 93 93 93 93 93 94 95 96 96
7.1.3 7.1.4 7.1.5 8 $\mathcal{T} - \mathcal{T}_{2}^{2}$ 8.1 \mathcal{R}_{3}^{2} 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2 VST	トラッキンク・シェネレーターを使用したエフェクト シーケンサーを使ってメロディーを作成 シーケンサーで変調のパターンをシーケンスする 2600 Vの様々なモードでの使用方法 マプリケーションを立ち上げる 初期設定の変更 コントロール・バー CPU使用率について パニック機能 インストゥルメントの保存	86 89 91 93 93 93 93 93 94 95 96 96 97
7.1.3 7.1.4 7.1.5 8.7 $- 72$ 8.1 $- 72$ 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2 VST 8.2.1	トラッキンク・シェネレーターを使用したエフェクト シーケンサーを使ってメロディーを作成 シーケンサーで変調のパターンをシーケンスする 2600 Vの様々なモードでの使用方法 マプリケーションを立ち上げる 初期設定の変更 コントロール・バー CPU使用率について パニック機能 インストゥルメントの保存 →	86 89 91 93 93 93 93 93 93 94 95 96 96 97 97
7.1.3 7.1.4 7.1.5 8 アープ2 8.1 スタ 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2 VST 8.2.1 8.2.1 8.2.2	 トフッキンク・シェネレーターを使用したエフェクト シーケンサーを使ってメロディーを作成 シーケンサーで変調のパターンをシーケンスする 2600 Vの様々なモードでの使用方法 マプリケーションを立ち上げる オ期設定の変更 コントロール・バー CPU使用率について パニック機能 インストゥルメントの保存 マントロール VSTインストゥルメントとして使用する場合 	86 89 91 93 93 93 93 93 93 94 95 96 96 97 97 97
7.1.3 7.1.4 7.1.5 8 アープ2 8.1 スタ 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2 VST 8.2.1 8.2.1 8.2.1 8.2.3 8.2.3	トラッキンク・シェネレーターを使用したエフェクト シーケンサーを使ってメロディーを作成 シーケンサーで変調のパターンをシーケンスする 2000 Vの様々なモードでの使用方法 マプリケーションを立ち上げる 初期設定の変更 コントロール・バー CPU使用率について パニック機能 インストゥルメントの保存 ✓ インストール VSTインストゥルメントとして使用する場合 MIDIトラックとの接続	86 89 91 93 93 93 93 93 94 95 96 96 96 97 97 97 97
7.1.3 7.1.4 7.1.5 8 アープ2 8.1 スタ 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2 VST 8.2.1 8.2.1 8.2.2 8.2.3 8.2.4	トラッキンク・シェネレーターを使用したエフェクト シーケンサーを使ってメロディーを作成 シーケンサーで変調のパターンをシーケンスする 2600 Vの様々なモードでの使用方法 7ンドアローン・モードで使用する アプリケーションを立ち上げる 初期設定の変更 コントロール・バー CPU使用率について パニック機能 インストゥルメントの保存 *** インストゥルメントの保存	86 89 91 93 93 93 93 93 93 94 95 96 96 96 97 97 97 97 97
7.1.3 7.1.4 7.1.5 $8 \mathcal{P} - \mathcal{P}_2^{\prime}$ 8.1 $ \mathcal{P} - \mathcal{P}_2^{\prime}$ 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2 $ \text{VST}$ 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 0.0 $ \text{P} - \mathcal{P}_2^{\prime}$	トラッキンク・シェネレーターを使用したエフェクト シーケンサーを使ってメロディーを作成 シーケンサーで変調のパターンをシーケンスする 2000 Vの様々なモードでの使用方法 マプリケーションを立ち上げる 初期設定の変更 コントロール・バー CPU使用率について パニック機能 インストゥルメントの保存 ™ インストール VSTインストゥルメントとして使用する場合 MIDIトラックとの接続 プリセットの保存 オートメーション	86 89 91 93 93 93 93 93 93 94 95 96 96 96 97 97 97 97 97 97
7.1.3 7.1.4 7.1.5 8 $\mathcal{T} - \mathcal{T}_{2}^{2}$ 8.1 \mathcal{I}_{2}^{3} 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2 VST 8.2.1 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.3 Pro	 トラッキンク・シェネレーターを使用したエフェクト シーケンサーを使ってメロディーを作成 シーケンサーで変調のパターンをシーケンスする 2000 Vの様々なモードでの使用方法 2000 Vの様々なモードで使用する アプリケーションを立ち上げる 初期設定の変更 コントロール・バー CPU使用率について パニック機能 インストゥルメントの保存 ** インストゥルメントとして使用する場合 MIDIトラックとの接続 プリセットの保存 オートメーション Tools™ 	86 89 91 93 93 93 93 93 94 95 96 96 96 97 97 97 97 97 97 97
7.1.3 7.1.4 7.1.5 $8 \mathcal{P} - \mathcal{P}_2$ 8.1 $\not\subset \beta$ 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2 \lor ST 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.3 \Pro 8.3.1 2.22	トフッキンク・ジェネレーターを使用したエフェクト シーケンサーを使ってメロディーを作成 シーケンサーで変調のパターンをシーケンスする 2000 Vの様々なモードでの使用方法 マプリケーションを立ち上げる 初期設定の変更 コントロール・バー CPU使用率について パニック機能 インストゥルメントの保存 ™ インストール VSTインストゥルメントとして使用する場合 MIDIトラックとの接続 プリセットの保存 オートメーション Tools™ インストール	86 89 91 93 93 93 93 93 94 95 96 96 96 97 97 97 97 97 97 97 97 97
7.1.3 7.1.4 7.1.5 $8 \mathcal{T} - \mathcal{T}_2^2$ 8.1 $ \mathbb{Z} \land 3$ 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2 $ \text{VST}$ 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.3 $ \text{Pro}$ 8.3.1 8.3.2 2.2.2	 トフッキング・ジェネレーダーを使用したエフェクト シーケンサーを使ってメロディーを作成 シーケンサーで変調のパターンをシーケンスする 2600 Vの様々なモードでの使用方法 アプリケーションを立ち上げる 初期設定の変更 コントロール・バー CPU使用率について パニック機能 インストゥルメントの保存 マリセットの保存 ブレ インストール VSTインストゥルメントとして使用する場合 MIDIトラックとの接続 プリセットの保存 オートメーション Tools™ インストール RTASとHTDM 	86 89 91 93 93 93 93 93 94 95 96 96 96 96 97 97 97 97 97 97 97 97 97 97
7.1.3 7.1.4 7.1.5 $8 \mathcal{T} - \mathcal{T}_{2}^{2}$ 8.1 $\times 3$ 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2 \vee ST 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.3 \Pr o 8.3.1 8.3.2 8.3.3 2.2.4 8.3.2 8.3.1 8.3.2 8.3.3 2.2.4 8.3.2 8.3.1 8.3.2 8.3.3 2.2.4 8.3.2 8.3.1 8.3.2 8.3.3 8.3.3 8.3.3 8.3.3 8.3.3 8.3.3 8.3.3 8.3.3 8.3.3 8.3.3 8.3.3 8.3.3 8.3.3 8.3.3 8.3.4 8.3.3 8.3.3 8.3.4 8.3.3 8.3.3 8.3.4 8.3.3 8.3.4 8.3.3 8.3.4 8.3.3 8.3.4 8.3.3 8.3.4 8.3.3 8.3.3 8.3.4 8.3.3 8.3.3 8.3.4 8.3.3 8.3.3 8.3.4 8.3.3 8.3.3 8.3.4 8.3.3 8.3.3 8.3.4 8.3.3 8.3.3 8.3.3 8.3.4 8.3.3 8.3.3 8.3.4 8.3.3 8.3.3 8.3.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8	 トラッキンク・シェネレーターを使用したエフェクト シーケンサーを使ってメロディーを作成 シーケンサーで変調のパターンをシーケンスする 2600 Vの様々なモードでの使用方法 アプリケーションを立ち上げる 初期設定の変更 コントロール・バー CPU使用率について パニック機能 インストゥルメントの保存 インストゥルメントとして使用する場合 MIDIトラックとの接続 プリセットの保存 オートメーション Tools[™] インストゥルメントを開く MIDIトラ・ルメントを開く 	86 89 91 93 93 93 93 93 94 95 96 96 96 96 97 97 97 97 97 97 97 97 97 97 97 97 97
7.1.3 7.1.4 7.1.5 $8 \mathcal{P} - \mathcal{P}_{2}^{\prime}$ 8.1 $\times \beta$ 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2 \vee ST 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.3 \Pr o 8.3.1 8.3.2 8.3.3 8.3.4 2.25	 トラッキング・ジェネレーターを使用したエフェクト シーケンサーを使ってメロディーを作成 シーケンサーで変調のパターンをシーケンスする 2000 Vの様々なモードでの使用方法 アプリケーションを立ち上げる 初期設定の変更 コントロール・バー CPU使用率について パニック機能 インストゥルメントの保存 インストゥルメントとして使用する場合 MIDIトラックとの接続 プリセットの保存 オートメーション Tools™ インストゥルメントを開く MIDIトラックとの接続 プリヒットの保存 	86 89 91 93 93 93 93 93 94 95 96 96 96 97 97 97 97 97 97 97 97 97 97 97 97 97
7.1.3 7.1.4 7.1.5 $8 \mathcal{T} - \mathcal{T}_{2}$ 8.1 $ \mathcal{R} \neq$ 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2 $ VST$ 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.3 $ Pro$ 8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 2.2.2	 トラッキング・ジェネレーターを使用したエフェクト シーケンサーを使ってメロディーを作成 シーケンサーで変調のパターンをシーケンスする 2000 Vの様々なモードでの使用方法 アプリケーションを立ち上げる 初期設定の変更 コントロール・バー CPU使用率について パニック機能 インストゥルメントの保存 インストゥルメントとして使用する場合 MIDIトラックとの接続 プリセットの保存 インストゥルメントを開く MIDIトラックとの接続 プリセットの保存 	86 89 91 93 93 93 93 93 94 95 96 96 96 96 97 97 97 97 97 97 97 97 97 97 97 97 97
7.1.3 7.1.4 7.1.5 $8 7 - 7'_2$ 8.1 $ \nearrow \beta$ 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2 $ VST$ 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.3 $ Pro$ 8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 8.3.6 0.4 $ Dvvv$	トラッキンク・シェネレーターを使用したエフェクト シーケンサーを使ってメロディーを作成 シーケンサーで変調のパターンをシーケンスする 2000 Vの様々なモードでの使用方法 7ンドアローン・モードで使用する アプリケーションを立ち上げる 初期設定の変更 コントロール・バー CPU使用率について パニック機能 インストゥルメントの保存 インストゥルメントとして使用する場合 MIDIトラックとの接続 プリセットの保存 オートメーション Tools™ インストール RTASとHTDM インストゥルメントを開く MIDIトラックとの接続 プリセットの保存 Pro Toolsにおけるオートメーション	86 89 91 93 93 93 93 93 93 93 94 95 96 96 96 96 96 96 97 97 97 97 97 97 97 97 97 97 97 97 97
7.1.3 7.1.4 7.1.5 8 7 - 7'2 8.1 $ 7 5'$ 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2 $ VST$ 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.3 $ Pro$ 8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 8.3.6 8.4 $ DXi^2$	トラッキンク・シェネレーターを使用したエフェクト シーケンサーを使ってメロディーを作成 シーケンサーで変調のパターンをシーケンスする 2000 Vの様々なモードでの使用方法 7ンドアローン・モードで使用する アプリケーションを立ち上げる 初期設定の変更 コントロール・バー CPU使用率について パニック機能 インストゥルメントの保存 インストゥルメントとして使用する場合 MIDIトラックとの接続 プリセットの保存 オートメーション Tools™ インストール RTASとHTDM インストゥルメントを開く MIDIトラックとの接続 プリセットの保存 Pro Toolsにおけるオートメーション	86 89 91 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 94 95 96 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 98 99 99 99 99 90 100 100 101 102
7.1.3 7.1.4 7.1.5 8 $\mathcal{T} - \mathcal{T}_{2}^{\prime}$ 8.1 \mathcal{I}_{3}^{\prime} 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2 VST 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.3 Pro 8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 8.3.6 8.4 DXi [*] 8.4.1	 トフッキシク・シェネレーターを使用したエフェクト シーケンサーを使ってメロディーを作成 シーケンサーで変調のパターンをシーケンスする 2600 Vの様々なモードでの使用方法 2700 Vの様々なモードで使用する アプリケーションを立ち上げる 初期設定の変更 コントロール・バー CPU使用率について パニック機能 インストゥルメントの保存 インストゥルメントとして使用する場合 MIDIトラックとの接続 プリセットの保存 オートメーション Tools™ インストール RTASとHTDM インストゥルメントを開く MIDIトラックとの接続 プリセットの保存 Pro Toolsにおけるオートメーション インストール 	86 89 91 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 94 95 96 97 99 99 99 90 100 101
7.1.3 7.1.4 7.1.5 8 $\mathcal{T} - \mathcal{T}_{2}^{\prime}$ 8.1 \mathcal{I}_{2}^{\prime} 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2 VST 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.3 Pro 8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 8.3.6 8.4 DXi ^T 8.4.1 8.4.2	 トフッキシク・シェネレーターを使用したエフェクト シーケンサーを使ってメロディーを作成 シーケンサーで変調のパターンをシーケンスする 2600 Vの様々なモードでの使用方法 2700 Vの様々なモードで使用する アプリケーションを立ち上げる 初期設定の変更 コントロール・バー CPU使用率について パニック機能 インストゥルメントの保存 インストゥルメントとして使用する場合 MIDIトラックとの接続 プリセットの保存 オートメーション Tools[™] インストゥルメントを開く MIDIトラックとの接続 プリセットの保存 Pro Toolsにおけるオートメーション インストゥルメントを開く (SONAR[™]) マロットのよったが 	86 89 91 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 94 95 96 97 99 99

8.4.4	プリセットの保存	103
8.4.5	オートメーション	103
8.5 Au	udio Unit™	104
8.5.1	Logic Proの場合	104
8.5.2	Digital Performer 4の場合	106
8.5.3	プリセットの保存	107
8.5.4	オートメーション	107

1 イントロダクション

1.1 アープ・シンセサイザー、そして「アープ 2600」の誕生

アラン・R・パールマン氏(彼のイニシャルがアープ・シンセサイザーの語源になっています)はマ サチューセッツ州のウースター工科大学に在学中の1948年頃、電子楽器に興味を引かれ「電子音 楽」と「ピアノ」の融合について考えるようになりました。

NASA のジェミニと共同開発したアポロ計画用アンプの商品化が彼のシンセサイザー開発への第一歩 となりました。1968年頃、彼は(伝説によると) 《Switched-On Bach (スイッチド・オン・バッ ハ) 》を聞いた後、本格的に電子楽器制作の可能性を探究し始めました。

1969 年、アラン・R・パールマンはデビット・フレンド とルイス・G・ポロック共にアープ社(設立 当時は Tonus Inc.)を設立しました。会社をニュートンハイランド(アメリカ、マサチューセッツ 州)にかまえ、電子製品の開発にはじまり、ついにはモジュラー型シンセサイザー「アープ 2500」を 発表するに至りました。「アープ 2500」では、モーグ・モジュラーに見られるようなケーブルで接続 する方式のシンセサイザーではなく、あらたにシンセサイザー内部をケーブルで接続する方式を開 発・採用し、この方式を採用した「アープ 2500」はアメリカの大学で賞賛を受けました。

アープ社はその後順調に発展を遂げ、1972年に伝説のシンセサイザー「アープ 2600」を発表しました。セミ・モジュラー・タイプの「アープ 2600」は大成功を収め、スティービー・ワンダー、ジョー・ザヴィヌル(ウエザーリポート)、トニー・バンクス(ジェネシス)、ジャン・ミッシェル・ジャール、ハービー・ハンコックなど、多数の著名ミュージシャンから支持され、70年代のシンセサイザーのマーケット・シェアを 40%近く獲得するに至りました。

登場から 10 年の間に「アープ 2600」として 3 種類のバージョンが商品化されました。最初に登場したモデルは、青いパネルを採用していたことから《ブルー・ミーニー》と呼ばれました。その後、同じく 1972 年に 2 つめのバージョン (灰色のパネル・カラーに白いパネル文字が特徴)が製造され、世界的にアープの名前は世界に知られるようになりました。1978 年、アープ社はシンセサイザー全てのグラフィックを変更し、黒いパネル・カラーにオレンジ色のパネル文字が特徴的な最終バージョンを発表しました。

※アープ 2600 V ではこの 3 種類のパネル・カラーを選択することができます。お好みのバージョン のグラフィックを選択してご使用ください。 (ユーザーマニュアル 32 ページを参照)

アープ・シンセサイザーの良きライバルにモーグ・シンセサイザーが挙げられます。これら2つのシ ンセサイザーは互いに意識しあっていた痕跡が見られます。例えば、モーグはつまみやベンド・ホイ ールを使用しているのに対し、アープはスライダーを採用していることなどが挙げられ、互いに独自 性を打ち出し競い合っていたことがうかがえます。

この競い合いには有名なエピソードがあります。アープが使用していた 24 dB/オクターブ・フィルタ ー「The 4012」は、有名なモーグのフィルターのレプリカだったのです。ついに 1973 年にモーグ社 はアープ社を提訴、これによりアープ社はフィルターの回路変更を余儀なくされ「The 4012」の代わ りにあらたに「The 4072」フィルターを誕生させました。しかしこのフィルターには高周波数の目盛 にエラーがあり、カットオフ周波数がプレスに公表した 16 kHz ではなく、11 kHz を越えませんでし た。しかしユーザーへのリコールも早く、大きな損失とはなりませんでした。このような背景から 「The 4072」が完成する前の初期型「アープ 2600」(《ブルー・ミーニー》と2 つめのバージョン の初期ロット)には「The 4012」フィルターが採用されています。 アープ・シンセサイザーのオシレーターは、モーグ・シンセサイザーより安定し、信頼性の高いもの でした(ロバート・モーグ氏もその事実を認めています)。しかし、アープ社は長い間フィルターの 電気回路の産業著作権を侵害していたため、修理を行う場合に大きな問題も引き起こしていました。

1972年、アープ社はその1年前に発売されたミニモーグとの対抗商品として「Odyssey」を発表し、同じ年にプリセット型のシンセサイザー「The Pro-Soloist」を発表しました。

1976 年、アープ社は2系統の独立した8ステップ・シーケンスを作成できる16ステップ・シーケン サーをリリースし、非常に高い人気を誇りました(アープ2600 V でもこのシーケンサーはエミュレ ートされています)。同年、「Omni」も発表されました。これはアープ社で最も成功した商品です。 「Omni」は2音ポリフォニックでバイオリン・サウンドとベース・サウンドが特徴的なシンセサイザ ーでした。

しかし 1976 年頃、ギター・シンセサイザー「the Avatar」の開発プロジェクトによって大きな負債を 抱えることになりました。アープ社は「the Avatar」の開発に 400 万ドルかけましたが、この商品が 生み出した利益は2年間でたったの 100 万ドルでした。アラン・R・パールマンは開発当初からこの プロジェクトに反対でしたが、アープ社の増え続ける負債に直面し、更なる商品開発の必要性に迫ら れることになりました。

その後、1981 年にアープ社は CBS に買収され、CBS と元アープ開発チームがプログラム可能なポリフォニックシンセサイザー「Chroma」をリリースし、1984 年には「Chroma」を簡易化し、MIDI 機能を搭載した「Chroma Polaris」をリリースしました。

1.2 TAE®技術により忠実なエミュレーションを実現

TAE[®]とは、**True Analog Emulation**(トゥルー・アナログ・エミュレーション)の略で、アナログ機器 をデジタルで再現するための技術です。

TAE[®]が持つアルゴリズムは、ソフトウエア上において、ハードウェアの持つスペック、特徴を忠実 に再現することができます。そして、この技術こそアープ 2600 V の音色クオリティーが他の追従を 許さない決定的な理由であるといえます。

さらに詳しく TAE[®]を説明していきます。

1.2.1 折り返しノイズのないオシレーター

標準的なデジタル・シンセサイザーは、高周波数帯域において折り返しノイズ成分を作り出します。 パルスウィズ・モジュレーションやフリケンシー・モジュレーションを使用している場合についても 同様です。

TAE[®] は、全ての処理(PWM や FM など)において、折り返しノイズ成分のないオシレーター波形を CPU に余分な負担をかけることなく作り出すことが可能です。

1.2.2 アナログ・シンセサイザーがもつ波形のゆらぎを忠実に再現

原型のアナログ・オシレーターは、コンデンサーの放電特性を使い、ノコギリ波、三角波、矩形波な どの共通した波形を作り出します。これは、波形がわずかに曲がっているということを意味します。 TAE®は、コンデンサーの放電特性の再現を可能にしました。下図はオリジナルのアープ 2600 とアー プ 2600 V の波形分析図です。2 つの波形はともに、アープ 2600 V のローパス、ハイパス・フィルタ ーによってフィルタリングされた波形です。

TAE[®]技術によるアープ 2600 V の波形画像

加えて、原型のアナログ・オシレーターは不安定であり、波形の形状が周期ごとに微妙に異なってい ます。これは、温度や、その他の環境の状態によって左右されるアナログ・ハードウェアが持つ繊細 な部分です。

TAE[®]は、このオシレーターの不安定な部分までも再現し、より暖かく、分厚い音色を作る出すことが可能です。

1.2.3 アナログ・フィルターの忠実な再現

TAE[®]は、アナログ・フィルターが持つ特徴を、どのデジタル・フィルターよりも忠実に再現します。 TAE[®]技術は、オリジナルのフィルターの特徴を再現するアルゴリズムを使用することでアナログ・フ ィルターを忠実にエミュレートします。下図のカーブは、オリジナルのアープ 2600 とアープ 2600 V のフィルターの比較図です。

1.2.4 リング・モジュレーター

アープ 2600 V にはオリジナルのアープ 2600 と同様に、リング・モジュレーターが搭載されています。 リング・モジュレーターは、波形(サイン波)を他の信号と掛け合わせて複雑な倍音を作成すること ができます。これにより、手軽にメタリックなサウンドを作成することができます。倍音の数を増や していくと普通、リング・モジュレーターは耳障りな折り返しノイズを発生してしまいますが、TAE[®] の技術は、リング・モジュレーターから来る折り返し信号を取り除きます。

2 インストール

2.1 <u>Windows9x, Me, 2000, XP でのインストール</u>

▶ CD-ROM を CD-ROM ドライブにセットしてください。エクスプローラーまたはマイコンピュータ の中から《 ARP2600V Setup PC.exe 》のアイコンを選択し、ダブルクリックしてください。

始めに「アープ 2600 V」をどの階層にインストールするかを設定する画面が表示されます。 初期設定では「C:¥Program Files¥Arturia¥ARP2600V」になっていますが、必要に応じて任意に変更することが可能です。

Choose install Directory		×
<u>P</u> ath:		
c:¥program files¥arturia¥arp2600 √		
Directories:		
C→ c¥ C→ PROGRAM FILES C→ Arturia MARP2600 V C→ save	~	OK Cancel
Dri <u>v</u> es:		
E C:	•	ネットワーク

インストール・フォルダーの選択

次に、ライセンス・ナンバーとユーザー・ネームを入力するダイアログが表示されます。製品 CD-ROM ケースに記載されたライセンス・ナンバーとお名前を英数半角で入力してください。

※First name 欄にはお名前、LAST NAME 欄には苗字を入力してください。

User Informat	tion		
Licence First nam	 e:		
LAST NAME	:		
	Cancel	ОК	
ライセンス・ナン	・バー、およびユ	ーザー・ネーム	人力画面

これで、スタンドアローン版のアープ 2600 V をインストール準備ができました。次にプラグイン版 のインストール画面が表示されますので、ここで使用するプラグインの種類を選択してください (VST, DXI, RTAS/HTDM)。プラグイン版の解説は第8章で詳しく取り上げています。

ARP2600 V Plug-in Installation
The ARP2600 V will be installed on your computer. You may also want to install one or more of the following protocols :
🔽 VST Protocol
VI Protocc
🗖 RTAS/HTDM Protools protocol
ОК

プロトコルの選択

VST と RTAS/HTDM プロトコルでは、アープ 2600 V を使用するホスト・アプリケーションのフォル ダーを選択する必要があります。

VST Plugins directory	_	×
<u>P</u> ath: C\Program Files\Steinberg\Wstplugins Directories: C→ c:\ C→ Program Files C→ Steinberg C→ Vstplugins		OK Cancel
Dri <u>v</u> es:	•	ネットワーク

VST プラグインのインストール先フォルダーの選択

以上で、インストールの手順は終了です。

ご注意: アープ2600 Vは、アップデート時や追加プリセット・バンクをインポートする際にアプリケーションCD-ROMを要求し ます。必ずお手元にアプリケーションCD-ROMをお持ちになるようお願いいたします。 ソフトウエアを再インストールする場 合にはライセンス・ナンバーも必要となります。

2.2 Mac OS X でのインストール

アプリケーション CD-ROM をコンピューターの CD-ROM ドライブにセットし、デスクトップに表示 された ≪ ARP2600 V.pkg ≫ のアイコンをダブルクリックしてください。

管理者のユーザー・ネームとパスワードを入力するダイアログが現れる場合は必要な項目を入力して ください。

使用許諾契約書が画面に表示されますので、使用許諾契約書に同意してインストールを進める場合は 「同意する」を選択してください。次にインストール先を選択する画面が表示されますので、アープ 2600 V をインストールするハードディスクを選択してください。

※使用許諾契約書はユーザーマニュアルの最後にも記載されています。

インストールが始まると、ライセンス・ナンバーとユーザー・ネームを入力するダイアログが表示されます。製品 CD-ROM ケースに記載されたライセンス・ナンバーとお名前を英数半角で入力してください。

ユーザー登録			
License Number: 0501-****			
First name(名):	Idecs		
Last name(姓):	Music Software		
	(キャンセル) OK		

※First name 欄にはお名前、Last name 欄には苗字を入力してください。

必要事項を入力して OK をクリックすれば、インストールが開始されます。アープ 2600 V では必要な プラグイン・ファイルはすべて自動的にインストールされます。

ご注意: アープ2600 Vは、アップデート時や追加プリセット・バンクをインポートする際にアプリケーションCD-ROMを要求し ます。必ずお手元にアプリケーションCD-ROMをお持ちになるようお願いいたします。 ソフトウエアを再インストールする場 合にはライセンス・ナンバーも必要となります。

このセクションでは、「アープ2600 V」の基本的な動作を説明します。このアプリケーションで使用 するウインドウやモジュール、および信号の流れについて紹介します。画面上に見える各モジュール、 コントローラーの説明は次章以降で説明していきます。

このマニュアルの後半の第7章「**サウンド・デザインの基礎知識**」では、初めてアープ2600 V に触れ る方にとって基礎を学ぶための説明が記載されています。是非、一度読まれることをお奨め致します。

アープ 2600 V の全景

3.1 <u>プリセット音色を使う</u>

プリセット音色(プログラム音色)を使うことで、保存機能がなかったオリジナルのアープ2600から 「アープ2600 V」への進化を体感することができます。

アープ2600 V のプリセット音色は、保存されたときの音色を復元するため、全てのモジュール接続情報やコントローラー・セッティング、エフェクト情報までも保存しています。

アープ 2600 V の音色に慣れ親しんでもらうために音色を選択してみましょう。ここでは ≪ JMBlanchet ≫ バンクのサブ・バンク ≪ Basses ≫ から JMB_Simple1 を選んでみましょう。

 BANK と表示された LCD スクリーンの▼部分をクリックしてください(この LCD スクリーンには 現在選択されているバンク名が表示されています)。クリックすると、プルダウン・メニュー形 式で利用可能なバンク名が表示されます。ここで 《 JM.Blanchet 》と書かれたバンクにマウスを 移動させてください。

バンク名にマウスを移動すると、バンク名の右側にサブ・バンク名が表示され、サブ・バンクの音色 カテゴリーにマウスを移動するとプリセット音色リスト表示されます。(それぞれLCDスクリーンに は現在選択されている音色のサブ・バンク名、音色名が表示されます)。

- Midi in: All 🝷 Chan: All 🝷 Range: 🔲 0 127 -Octave: 0 🕂 In: * JMB_Simple1 Blanchet Basses JMB_Bass1 ✓ Basses JM_Blancher JMB_Simple1 Templates Leads Pade user New preset ... Sequences AII. Delete preset "JMB_Simple1" New subbank ... New bank BP 12 Delete sub bank "Basses' RESO NCE Delete bank "JM_Blanchet" JUSE UDTH NOTCH FREQUENCY REAMPLIFIER $\rightarrow \bigcirc \begin{bmatrix} 8'\\16' \end{bmatrix}$
- ▶ サブ・バンク 《 Basses 》の中から 《 JMB_Simple1 》を選択してください。

プリセット音色 JMB_Simple1 の選択

アープ 2600 V にはあらかじめ著名なサウンド・デザイナーによるプリセット音色が 400 種類以上収録されていますが、《 user 》バンクのサブ・バンク 《 Templetes 》 に収録されているプリセット音色を使用して新たな音色を作ることも可能です。

※ このバンクには 例えば《1_Osc》のように1つのオシレーターとローパス・フィルター、VCA を 使用したシンプルなテンプレート音色が数種類用意されています。

BANK で《 AI 》を選択するとアープ 2600 V に収録されている全音色を音色別にカテゴライズして表示させることが可能です。これによりベース、キーボード、パッドといった音色カテゴリー別にすばやく音色を選択することができます。

3.1.1 プリセット音色のエディット

それではシンプルな音色エディットから始めましょう。

▶ ローパス・フィルターの《INIT.FILTER FREQUENCY(カットオフ周波数)》スライダーを操作して《JMB_Simple1》のサウンドを明るくしてみましょう。《INIT.FILTER FREQUENCY(カットオフ周波数)》を右方向へ開くと音色が徐々に明るくなっていくことが確認できると思います。この水平スライダーをお好みの位置にセットしてください。

音色の明るさを設定する

 ▶ 同様に、オシレーター1 (VCO1) の≪ Range (レンジ) ≫ セレクター使用してオシレーターのレン ジを変更することができます。 (LF = ロー・フリケンシー、 32' = -2 オクターブ、16' = -1 オク ターブ、8' = 基本チューニング、4' = +1 オクターブ)

※+/-のオクターブ表記は、それぞれ基本チューニングからの変化量を表しています。

オシレーター1 (VCO1) のレンジ設定

先ほどフィルターを操作したことで、すでにプリセット音色《JMB_Simple1》を変更されています。 次に作成した音色を保存してみましょう。

- ▶ ユーザー・プリセットを保存するには、ツール・バーにある 《SAVE AS 》アイコンをクリックします。保存先で《 New bank 》を選択すると自動的に新しいバンクとサブ・バンクを作成し、音色を保存します。新たに作成されたバンク名、サブ・バンク名、プリセット名は《 Default* 》と表示されます。
- ▶ これらバンク名等は LCD ディスプレイをクリックすることで名前を変更することができます。

M Blanchet	
✓ JM_Blanchet	•
Templates	۰ 🔜
user	۱.
All	► 0.3
New bank	FINE
Delete bank "JM_Blanchet"	5 JL 51
RELIEUER ■8' off K2 ■8' プリセット音色の保存	

▶ 《 user 》バンクにあるプリセット音色は、ツール・バーの 《 SAVE 》 アイコンをクリックして設定や変更を保存することができますが、ファクトリー・プリセット(あらかじめソフトウエアに収録されている音色)は上書きすることができません。《 SAVE AS 》 アイコンを使用して他の保存先に保存してください。

注意! プリセット音色名を変更しただけでは音色の設定は変化しません。この操作は現在選択しているプリセット音色の名前が変更されるだけです。

3.2 アープ 2600 V を構成する 3 つのセクション

アープ2600 Vは3つのセクションに大きく分かれます:

上から「シンセサイザー・セクション」「シーケンサー / LFO / グローバル・セッティング・セクション」「バーチャル・キーボード・セクション」の順で構成されています。

アープ 2600 V は、次の 2 種類の方法によってそれぞれのセクションを簡単に切り替えることができます:

▶ スライダーやジャックなどコントローラー以外のシンセサイザー本体部分をクリックしたままマ ウスを上下に移動することで画面をスクロールさせてセクションを切り替えることができます。

クリックしたままマウスを上下にドラッグする

- ▶ ツール・バーにあるショートカットで他のセクションに画面を切り替えることができます。左から順に以下のように配置されています。
- 「SYNTH」:シンセサイザー・セクション
- 「SEQ/KBD」:シーケンサー&バーチャル・キーボード・セクション
- 「ALL」:オール・セクション(モジュール全体)

All セクションを選択するとショートカット右の +/- ボタンで画面のサイズを変更することができます。また、変更したサイズは自動的に保存されます。

3.3 シンセサイザー・セクション

シンセサイザー・セクションは、バーチャル・ケーブルで接続するためのジャック型のインプット、 アウトプット、そして 73 ものシンセシス・パラメーターで構成されています。これらのスライダー やつまみ、スイッチ等を使用して音作りを進めていきます。

シンセサイザー・セクションを構成するモジュール:

- 3 基のオシレーター(VCO):三角波(Triangle),サイン波(sin),ノコギリ波(Sawtooth),矩形波(square)、またはパルス波(Pulse)といったオーディオ信号を発生し、その音程を設定します
- ノイズ・ジェネレーター
- リング・モジュレーター
- サンプル&ホールド
- ミキサー(オシレーターの出力信号、ノイズ・ジェネレーター、リング・モジュレーター用)
- ローパス・レゾナント 24dB フィルター、マルチモード 12 dB フィルター (LP, HP, BP, NOTCH)
- アンプ(VCA) (フィルターの出力信号、ステレオ出力用)
- 2 基のエンベロープ・ジェネレーター (ADSR, AR) (ローパス・フィルターとアンプ用)

シンセシス・パラメーター

シンプルなリード音色を例に、アープ 2600 Vの信号の流れを説明します:

《 Templates 》バンクのサブ・バンク 《 Temp_Synth 》から 《 1_Osc 》を選択してください。この 音色の構造はとてもシンプルです。オシレーター1 の矩形波(Squere)出力からローパス・フィ ルターにオーディオ信号が流れ、すぐにミキサー、出力アンプに流れています。ADSR エンベロ ープがフィルターのカットオフ周波数を変調し、2 つめの AR エンベロープがアンプのボリューム を変調しています。 ▶ 下図がこの音色の信号の構造です:

音色《1_Osc》の信号の流れ

▶ ローパス・フィルターのカットオフ周波数を下げるとこもった感じの音色になります。フィルタ ーのカットオフ周波数は≪INIT.FILTER FREQUENCY ≫ で設定します(オシレーター周波数の微調 整は≪FINE TUNE ≫ で設定します)。この音色では、フィルターのカットオフ周波数は ADSR エ ンベロープ(アタック・タイム、ディケイ・タイム、サスティン・レベル、リリース・タイム) によって変調されています。

▶ レゾナンスを上げると ADSR エンベロープで変調されたフィルターのカットオフ周波数帯の変化 が強調されます。レゾナンスの値を高く設定するとフィルターによるサウンドの変化を強調し、 風を切るようなサウンドになります。

INIT.FILTER FREQUENCY
VCF .

▶ フィルター・エンベロープのアタックの長さ(《 A TIME 》)を変更します。このコントローラーは、ノートが発音されてからフィルターがかかる(音色が明るくなる)までの時間を設定します。

 $\mathcal{T}_{\mathcal{T}}$

▶ 同じようにディケイ (《 D TIME 》) では、フィルターがかかってから変化が一定のレベルに落ち着くまでの時間を設定することができます。

2つめのエンベロープ、《AR》エンベロープも使用してみましょう。

▶ この AR エンベロープの 《 A TIME 》を上げてください。次第に音量が上がっていく音色になります。

アンプ・エンベロープ (AR) の《A TIME》パラメーター

3.4 シーケンサー・セクション

シーケンサー・セクションは、他のセクションと接続することにより、さらに音色作成と演奏の可能 性を広げます。シーケンサーの各種設定はシンセサイザー・セクションの下にあるシーケンサー・セ クションで設定します。アープ・シーケンサー(1601 タイプ)は16 ステップ・シーケンサー、再生 設定用のモジュール、ロー・フリケンシー・オシレーター(LFO)で構成されています。

3.4.1 アープ・シーケンサー

アープ・シーケンサーは、2つのモードを切り替えて使用することができます。ひとつは2つの独立 した8ステップのシーケンサーとして使用するモード、もうひとつは1つの16ステップのシーケン サーとして使用(2つの8ステップ・シーケンスを連続して再生)するモードです。2つのシーケン サー・アウトプットのひとつを、パラメーターを変調するために使用することも可能です。

アープ・シーケンサー

シーケンサー中央のスイッチとスライダーで各16ステップのトリガー(ゲート)とチューニングを管理します。チューニングはかなり細かい値で設定することができます。

2 種類のスライダー

• オシレーターでシーケンサーのスピード、スタート、ストップを設定・変更します。

オシレーター・セクション (スタート/ストップ)

《QUANTIZER》はそれぞれ16ステップで設定した音程を半音単位で正確にチューニングして出力します。つまり各ステップのチューニングを細かく調整しても強制的に半音単位にチューニングして出力されます。

クオンタイザー・セクション

簡単なメロディック・シーケンスを作成してみましょう:

▶ プリセット 《 Templates 》/ 《 Temp_SEQ 》/ 《 1x16_sequencer 》をロードしてください。

この音色ではシーケンサー・セクションとシンセサイザー・セクションがケーブルで接続されています。

- ▶ シーケンサーの 《 clock out (シーケンサー出力) 》は、ADSR エンベロープの 《 GATE 》 入力に 接続されています。
- ▶ シーケンサー右側の 《 QUANTIZED out A 》 出力は、オシレーター1 《 VCO 1 》 の 《 KBD CV 》 入力に接続されています。
- ▶ バーチャル・キーボードの鍵盤をクリックするとシーケンサーがスタートします。シーケンサー をスタートするとメロディーがループ再生されます。この時、ステップ・マネージャー(中央下 側のスライダー)で各ステップの音程を設定することができます。シーケンサーの《Start》ボ タンを押すとシーケンサーがスタートしますが、音色は発音されません。
- ▶ 16 ステップのスライダーを変更しお好みのメロディーを作成してみましょう。

3.4.2 LFO

オリジナルのアープ 2600 では、オシレーター2 をロー・フリケンシー・ポジション (《 LF 》 ポジション) にセットして LFO としての使用が可能でした。しかし、オシレーター2 を LFO としてフィルターのカットオフ周波数変調に利用すると残り 2 つのオシレーターしか波形出力に使用することができませんでした。

しかし、アープ 2600 V にはシーケンサー・モジュールに LFO モジュールを搭載しているため、3 つのオシレーターをすべて使用してもこの LFO モジュールによって様々な変調をおこなうことができます。また、《 midi sync 》をクリックすることで LFO のクロック・スピードを MIDI シーケンサーのテンポとシンクさせることが可能です。

応用:《1_Osc》にモジュレーション効果をつける:

▶ 例:すでに LFO モジュールはあらかじめオシレーターにビブラートをかけられるように内部接続 されているため、LFO モジュールの《 Vibrato Depth 》を上げるとビブラート効果がかかります。

« Vibrato Depth » を上げてビブラートをかける

 ▶ 次に LFO モジュールの三角波出力端子をクリックし、VCF モジュールの CONTROL 入力 《 VCO2 sin 》 に接続し、《 VCO2 sin 》 のスライダーを上げてください。カットオフ周波数の値を下げる と、効果が確認し易くなります。LFO によって音の明るさを周期的に変化させています。

3.5 エフェクト・セクション

エフェクト・セクションでは、ステレオ・ディレイ、コーラスを設定します。プリセットの音色の中 には、すでにエフェクトが設定されているものも多数用意されていますので参考にしてください。2 つのエフェクトはシンセサイザーの左スピーカー・パネル部分の《オープン/クローズ》ボタン(白 い三角)をクリックしてエフェクト・セクションを開きます。

エフェクト・セクショを開く

3.5.1 コーラス

コーラスは原音を複製し、少しデチューンをかけたオーディオ信号を作り出します。この複製した信 号と原音とミックスすることでサウンドに深さと厚みを与えます。

- ▶ 《 rate 》でコーラスのオシレーター・スピードを設定します。
- ▶ 《 depth 》でコーラスの深さを設定します。
- ▶ 《 dry/wet 》で原音とエフェクト処理されたサウンドのミックス・バランスを調節します。

コーラス

3.5.2 ディレイ

ディレイ・エフェクトはステレオ・エコーをかけることでサウンドに広がりを与えます。 左右それぞれのチャンネルに反復回数とスピードを設定可能です。左右のディレイ・タイムを変える ことでリズミカルなディレイ効果を生み出だすことができます。ディレイ・スピードもシーケンサー の MIDI テンポと同期させることができます。

≪JMB_Simple1 ≫を使用し、ディレイ・エフェクトをかけてみましょう:

- ▶ 《time L、R》スライダーで左右のディレイ・タイムを設定します。
- ▶ 《 feedb. L、R 》で左右の反復回数の数値を設定します。
- ▶ 《 dry/wet 》で原音とエフェクト処理されたサウンドのミックス・バランスを調節します。

ディレイ・エフェクト

3.6 リアルタイム・コントローラーと MIDI アサイン

アープ 2600 V はリアルタイム・プレイに対応し、オリジナルのアープ 2600 では不可能であった外部 MIDI コントローラーによるコントローラー操作も可能です。

MIDI アサインの設定例:

- ▶ Ctrl (Mac では Command) キーを押しながらフィルターの《INIT.FILTER FREQUENCY》をクリッ クしてください。MIDI コントロール設定ウインドウが表示されます。
- ◆ 《 Learn 》をクリックし、モジュレーション・ホイールなどの MIDI コントローラーを操作すると 自動的にコントロール・チェンジがアサインされ、アープ 2600 V のパラメーターが連動して動く ようになります。
- ▶ 各パラメーターに MIDI コントローラーをアサインし、MIDI シーケンサーなどにパラメーター操作 をレコーディングしておきライブなどで使用すると効果的です。

MIDI Control Setup	\boxtimes
Coarse Tune Filter	
Active	
Control #0	
Learn	

《INIT.FILTER FREQUENCY》パラメーターの MIDI アサイン

この章での設定を保存する場合は、ツール・バーの《SAVE》をクリックしてください。

補足 アープ 2600 V に設定した MIDI アサイン設定はアプリケーションを終了しても保存されています。

4 インターフェース

4.1 プリセット音色を使用するには

アープ 2600 V はプリセット音色をメモリーすることができます。プリセット音色は各モジュール間の接続、および音色作成に必要なコントローラー情報をすべて含んでいます。プリセット音色は音色作成者別の《BANK》、音色カテゴリー別の《SUB BANK》、音色別の《PRESET》に分類されています。プリセット音色は、バンク(《K.Ujiie》や《user》など)→ サブ・バンク(《basses》や《keyboards》など)→ プリセットの順で選択することができます。

アープ 2600 V には著名サウンド・デザイナーによる 400 種類を超えるファクトリー・サウンド・バンクが収録されていますが、もちろん新たにユーザー・バンクを作成することも可能です。ファクトリー・プリセットを変更した場合、その音色を上書きすることはできません。ファクトリー・プリセットを変更し、保存する場合はユーザー・バンクに保存することになります。

4.1.1 《 BANK 》、《 SUB BANK 》、《 PRESET 》の選択

バンク、サブ・バンク、また現在使用しているプリセット音色は、ツール・バーに常に表示されます。

バンク、サブ・バンク、および選択しているプリセットの表示

現在選択しているサブ・バンク(《 SUB BANK 》)のプリセットを選ぶには、《 PRESET 》ディスプレイ左側のボタン(下向きの三角)をクリックします。すると同じサブ・バンク内のプリセット音色がプルダウン・メニュー形式で表示されます。このメニューから同じサブ・バンクにあるプリセット音色を選ぶことができます。プリセット音色を変更すると、MIDI キーボードやシーケンサーからは新たに選択した音色のサウンドが出力されます。

同じサブ・バンク内のプリセット音色の選択

同じバンク(《BANK》)の中で異なるサブ・バンクのプリセット音色を選ぶには、《SUB BANK》 ディスプレイ左側のボタン(下向きの三角)をクリックします。ここでは同一バンク内のサブ・バン クがプルダウン・メニュー形式で表示されます。メニュー中の各サブ・バンクから、そのサブ・バン ク内にあるプリセット音色を選択することができます。一度サブ・バンクを選択すれば、《PRESET 》で新しく選択したサブ・バンクのプリセット音色を直接選択することができます。

同じサブ・バンク内のプリセット音色の選択

別のバンク(《 BANK 》)のプリセット音色を選択するには、現在選択されているバンク名左側のボ タン をクリックしてください。選択可能なバンクがプルダウン・メニュー形式で表示されます。 このメニューから変更したいバンク、サブ・バンク、プリセット音色を選択することができます。

BANK JM Blanchet SUB	
✓ JM_Blanchet	•
K.Ujiie	•
Templates	> 🔤
user	▶ 5C. F -1/ 0.3
All	
New bank	5/
Delete bank ″JM_Blanchet″	JLSE

メイン・バンクから音色を選択

プリセットを変更(コントローラーの設定、および接続を修正)した場合、《PRESET》ディスプレイに表示されているプリセット名の横にアスタリスク(*)が表示されます。

≪ BANK ≫ のプルダウン・メニューにある ≪ All ≫ を選択するとアープ 2600 V で使用可能な全音色は サブ・バンクのカテゴリー別(音色カテゴリー別)に表示されます。これによりすばやく必要な音色 を選択することが可能になっています。

4.1.2 《 BANK 》、《 SUB BANK 》、《 PRESET 》の作成

新しいサウンド・バンクを作成するには BANK 》 左側のボタン ・ をクリックしてします。 プルダ ウン・メニューの中から 《 New bank... 》 を選択すると新しいサウンド・バンクが作られます。 新た に作成したバンク名は 《 BANK 》 の LCD ディスプレイをクリックすることで変更することができま す。

同様に、新しいサブ・バンクの作成は《SUB BANK》左側のボタンをクリックし《New sub bank..》 を選んでください。バンクの時と同じ操作で新しいサブ・バンクの名前も変更が可能です。

新しいプリセット音色を作成するには、《PRESET》左側のボタンをクリックし《New preset...》を 選択します。新しいプリセット音色はそれまでに使用していた音色のセッティング(コントローラー と接続)を使用して作成されます。その後、サウンドのセッティングをおこない、《SAVE》ボタン をクリックすることにより変更を保存することができます(次項を参照)。もちろん、プリセット名 をクリックしてプリセット名を変更することも可能です。

4.1.3 ユーザー・プリセットの保存

プリセット音色の設定を保存する場合は、ツール・バーの《SAVE》ボタン(バンク名の左側)をクリックしてください。

《SAVE》ボタン

プリセット名を変更して保存したい場合は、ツール・バー中の《SAVE AS》ボタンをクリックして ください。プルダウン・メニューから保存するバンクを選択してください。元の音色上に保存すると 音色が上書きされます。

《 SAVE AS 》ボタン

▶ また、ファクトリー・プリセット(削除不可能)をエディットした場合、自動的にユーザー・プリセットとして保存する 《 SAVE AS 》機能が起動します。《 New bank… 》や《 New preset… 》を選択すると、新しい音色として保存することができます。保存後、3 種類の LCD ディスプレイに《 Default*》と表示され新しい音色であることが確認できます。

ファイル ヘルプ				
Midi in: All	▼ Chan: All ▼	Range: 🔲 0	× 127 ×	Octave: 0 🚊
SAVE SAVE AS BANK	Default0	Default0	PRESET	efault0
1				A CARLES IN THE REAL PROPERTY OF

4.1.4 プリセット・バンクのインポート/エクスポート

アープ 2600 V は、新しいプリセット・バンクをインポートすることが可能です。新しいプリセット・バンクをインポートするには、ツール・バーのインポート・ボタン(プリセット音色名の右側)をクリックしてください。

プリセット・バンクのインポート・ボタン

このボタンをクリックすると、インポートするバンク・ファイルを選択するダイアログが表示されま す。インポートしたいファイル(「***.arpbank**」ファイル)を選んで、「**開く**」をクリックしてくださ い。インポートしたプリセット・バンクは、自動的にバンク・リストに追加されます。

※プリセット・バンクのインポートにはアープ 2600 V のアプリケーション CD-ROM が必要になります。

アープ 2600 V は、作成したサウンド・バンクをエクスポートし、別のコンピューターでの使用や他 のユーザーとサウンド・バンクを共有することができます。サウンド・バンクは、ツール・バーのエ クスポート・ボタンを使用して《 BANK 》単位、《 SUB BANK 》単位、《 PRESET 》単位でエクスポ ートすることができます。

Ê.

プリセット・バンクのエクスポート・ボタン

エクスポート・ボタンをクリックし、エクスポートするカテゴリーを選択してください。カテゴリー を選択するとバンクの保存先、ファイル名を入力するダイアログが現れます。ファイル名を入力して 「**保存**」をクリックしてください。

4.2 パネル・カラーの変更

アープ 2600 V ではパネル・カラーを自由に切り替えて使用することができます。パネル・カラーは オリジナル「アープ 2600」のカラー・バリエーション3種類を忠実に再現しています。ツール・バー の「SKIN」をクリックし、番号を選択するとパネル・カラーが切り替わります。

- 「1」:青いパネル・カラーに白いパネル文字色タイプ(ブルー・ミーニー)
- 「2 : 灰色のパネル・カラーに白いパネル文字色タイプ
- 「3」:黒いパネル・カラーにオレンジのパネル文字色タイプ

パネル・カラーの選択

4.3 コントローラーの使用方法

4.3.1 垂直スライダー

アープ 2600 V は主にこのスライダーで値を設定します。スライダーをクリックしたまま上下に移動 させてパラメーターの値を設定します。

4.3.2 水平スライダー

上記の垂直スライダー同様によく使用するコントローラーです。スライダーをクリックしたまま左右 に移動させてパラメーターの値を設定します。

4.3.3 つまみ

初期設定でつまみのモードを設定することができます。初期設定については第8章(89ページ以降) を参照ください。

デフォルトではつまみのモードは「直線モード(Liner mode)」に設定されています。このモードで はつまみを回すようにドラッグするのではなく、垂直スライダーと同様にクリックしたまま上下にド ラッグすることで値を設定します。また、つまみを Shift キーを押しながらドラッグすることでるこ とで、パラメーターのより正確な微調整が可能です。

つまみのモードにはもう1つ「回転モード(Curcular mode)」が容易されています。このモードでは、 マウスでつまみの回りをなぞるようにドラッグして値を設定します。また、つまみをクリックしなが らつまみからやや離れたところで回転させると、さらに正確で緻密な設定をおこなうことができます。

直線モードは回転モードに比べてシンプルな操作でパラメーター値を設定することができます。しか し、画面上のマウスの動きで判断される垂直方向のピクセルの数によって設定できる値が制限されて いるため、比較的大まかな数値でパラメーターの値が変化します。このモードは大まかな値を設定す る場合に有効なモードといえます。もし、微調整のように細かな値での設定が必要な場合は、つまみ を右クリック、または Shift キーを押しながらドラッグしてください。

4.3.4 セレクター

セレクターは、フィルターのモードのようにいくつかの種類のパラメーターからひとつを選択する際 に使用します。

4.3.5 スイッチ

アープ 2600 V には数種類のスイッチがあります。スイッチをクリックすることでパラメーターを設定します。

MIDI シンク設定スイッチ

4.3.6 ピッチベンド

ピッチベンド・ホイールはオシレーターのピッチ(音程)を変化させるときに使用します。ピッチベンド・ホイールをクリックしたまま上下にドラッグするとサウンドのピッチ(音程)が変化します。 マウスをホイールから離すと自動的にホイールが中央の位置に戻ります。

4.4 ケーブルの使用

それぞれのモジュール(オシレーター、フィルター、アンプなど)をケーブルで接続することにより、 アープ 2600 V での音色作成の可能性がさらに広がります。ケーブルの使用は、音色を作成する際に 重要な役割を果たします。オリジナルのアープ 2600 では、モジュール間の接続を 2 種類のケーブル によって接続していました。

4.4.1 オーディオ接続/モジュレーション接続

オーディオ接続とは、例えば VCA ミキサーやフィルターのインプットへの接続を意味し、モジュレーション接続とは、例えば LFO の出力やエンベロープ・ジェネレーターの PWM や VCA のモジュレーション・インプットへの接続を意味します。接続方法はどちらも同じ操作ですが、オーディオ信号は 直接 VCA 出力に接続されていれば聞こえますが、モジュレーション信号は通常は聞こえません。モ ジュレーション信号は通常、LFO によるフィルターのカットオフ周波数変調等のようにゆったりとし た動きのパラメーター操作に使用されます。

オーディオ入力や出力といった接続端子やモジュレーション出力の接続端子はグラフィカル・インタ ーフェース上で、オリジナルのアープ 2600 と同様に接続することができます:

オーディオ入出力の接続端子やモジュレーション出力端子

右のスピーカー・パネル下にトラッキング・ジェネレーターが搭載されています。トラッキング・ジェネレーターには、他の入力端子とデザインが異なるモジュレーション入力端子があります:これは、 モジュレーション・レベルを設定可能な入力端子です。モジュレーション・レベルの設定については、 この章の後半で説明しています:

モジュレーション入力の接続端子

あるモジュールの出力と他のモジュールの入力を接続するには出力端子(out)をクリックしたまま 目的の入力端子(in)までドラッグします(マウスの動きに合わせてケーブルが伸びます)。この時、 接続可能な端子上に黄色い枠が表示され、接続可能な端子であることを認識することができます。そ の端子の枠内でクリックを離すことにより、モジュールの出力端子と入力端子が接続されます。

マウスによるケーブルの接続 (クリックしたままドラッグする)

また、ケーブルの接続は各モジュールの入力端子(in)、出力端子(out)を右クリック(Macintosh では Shift + クリック)することで表示されるメニューからおこなうこともできます。この場合、選択 した入力(in)、出力(out)端子と接続可能な端子がリスト形式に表示されます。接続先を確定する ためには 《 Connect 》メニューから接続先を選択します。《 Remove connections 》を選択すると接続 を解除することができます。すでに他のモジュール等に接続されている場合はメニューの一番下に接 続先の端子名が表示されます。

右クリック(また Shift + クリック)により表示される入力(in)、出力(out)のリスト

補足:各モジュールの入力端子(in)は1つの出力端子(out)にのみ接続可能が、それぞれの出力端子(out)はいくつもの入力端子に接続することができます。例えば、同じモジュレーション信号を数種類のオシレーターに同時にかけたい場合等に有効です。

4.4.2 接続の変更

すでに接続されているケーブルを別の端子に接続し直す場合は、ケーブルを接続する時と同様に入力 端子(in)側からドラッグしてケーブルを引き出し、別の出力端子(out)に接続します。

単純に接続を解除するには、解除したい端子上でマウスを右クリック(または Shift + クリック)し、 表示されるメニューの中から《 Remove connections 》を選択します。また、ケーブルそのものを選択 し(選択されるとケーブルが光ります)コンピューターのキーボードの《DEL》キーを押しても接続 を解除することができます。

※端子上を右クリック(または Shift + クリック)した際に表示されるメニューにある《Bypass Default Connection》を選択すると内部接続されているモジュールを無効にすることができます。 つまり、《Bypass Default Connection》を選択すると、そのジャック自体が無効になります。

補足:スプリーディング機能をオンにしているとケーブルを選択することができません。スプリーディング機能については (本章 4.4.4)を参照してください。
4.4.3 モジュレーション・レベル設定

モジュレーション入力端子には直接モジュレーション・インプットに入力される信号量を調節する機能があります(-100%から+100%で設定)。この機能を使用すると、通常必要な VCA を通しての信号量の調節をおこなわずにモジュレーション・レベルを設定することができます。モジュレーション入力端子のナットの緑をクリックするとモジュレーション・レベルが表示されますので、マウスを上下にドラッグして調節してください。

モジュレーション・レベル (変調量)の設定

右クリック(Macintosh では Shift + クリック)で調節するとさらに細かい値で設定をおこなうことができます。

注意:入力端子(ナット)の中心をクリックしてしまうとケーブルそのものが選択されてしまいま す。端子の外側(ナットの回り)をクリックして操作してください。右クリック(Shift + クリック) の場合も同様です。

4.4.4 スプリーディング

それぞれのモジュール間を多数のケーブルで接続すると端子やつまみがケーブルの影に隠れてしまう ことがあります。このようなときに便利なのがスプリーディング機能です。ツール・バー上の磁石型 のボタンを押すと、マウス・ポインタがケーブルに近づくとケーブルが自動的にマウス・ポインタを よけてパネル面が見えるようになります。マウスでケーブルを選択する際は、この機能を解除してく ださい。

2	ſ,	_		1	1
		r	1	I	l

スプリーディング機能の解除

4.4.5 バーチャル・キーボード

バーチャル・キーボード(キーボード画面にある鍵盤)を使用することで、外部の MIDI キーボード やシーケンサーにプログラミングされた MIDI データ(ノート情報)を使用しなくてもアープ 2600 V の音色を聞くことができます。単純に鍵盤をクリックするだけで鍵盤の音程に対応した音が鳴ります (ベロシティー機能はありません)。キーボードの左側にさまざまな設定を行うコントローラーが装 備されています。

4.4.6 MIDI コントロール

アープ 2600 V の多くのつまみ、スライダー、スイッチは、外部 MIDI コントローラーによってコント ロールすることができます。この機能を使用する場合は、まず使用する MIDI 機器がコンピューター に正常に接続されているかを確認し、シーケンサー、もしくはアープ 2600 V 側で接続された MIDI 機 器からの MIDI イベントを受信できるように設定しましょう。

アープ 2600 V に設定した MIDI チャンネルで送信された MIDI イベントを受信する例を紹介しましょう。 MIDI チャンネルという概念はシンセサイザーにおいては全世界的な標準規格として定義されており、 シーケンサーやアープ 2600 V でも同様です。アープ 2600 V は、120 もの MIDI コントロール信号を受 信し、それぞれのコントローラーに任意のコントロール・チェンジ・ナンバーをアサインすることが できます(仕様上、使用できないコントロール・ナンバーもあります。例:0、32、64 など)。

MIDI コントロールを設定は、はじめに Windows の場合はコンピューターのキーボードにあるコントロ ール・キー (Ctrl)、Macintosh ではコマンド・キー (Command)を押しながら任意のつまみをクリッ クしてください。下図のような MIDI コントロール設定ウインドウが現れ、MIDI コントロール・ナン バーを選ぶことができます。さらに"Learn"(学習)ボタンをクリックし、MIDI 機器のつまみやスラ イダーなどのフィジカル・コントローラーを操作することで自動的にアサインすることもできます。 この場合、各フィジカル・コントローラーに設定されているコントロール・ナンバーが自動的に設定 されます。つまみの MIDI コントロールを解除するには、MIDI コントロール設定ウインドウ内 の"Active"(作動中)チェックボックスをクリックし、チェックマークを消してください。

MIDI Control Setup	\boxtimes
Amount FM1 Osc1	
Active	
Control #0	
Learn	

MIDI コントロール設定ウインドウ

アープ 2600 V のパネルに描かれている文字(モジュール名など)はあらかじめ内部接続されている モジュールを示しています。スライダーやつまみを操作することでパネル文字によって記載されてい るモジュールのパラメーターを変化させることができます。ケーブルによってモジュールをパッチン グした場合、スライダーやつまみは内部接続されているモジュールとは関係なくパッチングによって 接続したモジュールのパラメーターを変化させることになります。

5 モジュール

アープ 2600 V は大きく分けて 3 つのモジュールから構成され、上から順に「サウンド・プログラミ ング・モジュールおよびエフェクト・モジュール」、「アープ・シーケンサー、キーボード設定イン ターフェースおよび LFO」、そして「バーチャル・キーボード」となっています。

5.1 サウンド・プログラミング・モジュール(シンセシス・セクション)

5.1.1 特徴

シンセシス・セクションは音色作成のためのモジュール群です。音色のプログラムに必要なケーブル 接続(パッチング)もこのセクションで行います。

シンセス・セクション内のモジュール間でのパッチングだけではなく、必要に応じてシーケンサー・ セクション内のモジュールにパッチングすることの可能です。

シンセシス・セクションは以下のモジュール群によって構成されています:

- モジュレーションのソースとしても使用可能な3基のオシレーター (VCO)
- 1 基のマルチモード・フィルター (VCF)
- 1 基のアンプ (VCA)
- 2 基のモジュレーション用エンベロープ (ADSR、AR)
- 1基のノイズ・ジェネレーター
- 1基のリング・モジュレーター
- 1基のエンベロープ・フォロワー
- 1基のサンプル&ホールド
- 2 基のミキサー (フィルターとアンプ (VCA) 用)
- 1基のエレクトロニック・スイッチ
- 1基のトラッキング・ジェネレーター・モジュール
- 4 基のミキサー
- 2種類のエフェクト (コーラスとディレイ)

5.1.2 オシレーター (VCO)

アープ2600 Vは、3 基のオシレーターを搭載しています。

オシレーターは、アープ 2600 の基本となる周波数(音の振動)の発生と波形のパルス幅(パルスウィズ)を管理します。オシレーター内のスイッチ、スライダー等の操作、またはモジュレーション・ インプットと他のモジュール(エンベロープ、ロー・フリケンシー・オシレーター(LFO)、モジュ レーション・ホイール等)のアウトプットとを接続することにより音色作成を進めていきます。 スライダーやレンジ・セレクターで3基のオシレーターを個別に設定することができ、ノコギリ波、 矩形波(またはパルス波)、三角波、サイン波という4種類の波形を出力することが可能です。

3 基のオシレーターを個別にチューニングし、波形をミックスすることで非常にリッチなサウンドが 簡単に作成することができます。またモジュレーション・インプットを使用することにより、さまざ まな音色変調が可能です。

3基のオシレーター

5.1.2.1 オシレーター1

:上下4オクターブ分のオクターブ・レンジ設定です。
変調用の低周波(LF)に設定することも可能です。
:半音ずつチューニングします。上下2オクターブまで変更
可能です。
:ファイン・チューンを設定します。最大半音まで調節可能
です。
: ノコギリ波と矩形波を出力する接続ジャックです。
:オシレーター 2、3 とのシンクを設定します。
:周波数変調用(FM)の入力接続ジャックです。
: キー・フォローに内部接続されています。
:) :サンプル&ホールドに内部接続されています。
: ADSRエンベロープに内部接続されています。
) : オシレーター2のサイン波に内部接続されています

5.1.2.2 オシレーター2

レンジ (4'8'16'32'LF) :上下4オクターブ分のオクターブ・レンジ設定です。 変調用の低周波(LF)に設定することも可能です。 **周波数設定(INIT. OSC. FREQUENCY)**:半音ずつチューニングします。上下2オクターブまで変更 可能です。 ファイン・チューン (FINE TUNE) :ファイン・チューンを設定します。最大半音まで調節可能 です。 **オーディオ出力(triang, Sin, Saw, Pulse)**:三角波、サイン波、ノコギリ波、パルス波を出力する 4つの接続ジャックです。 :三角波、サイン波、ノコギリ波、パルス波のパルスウィズ パルスウィズ(PULSE WIDTH) (パルス幅)を設定します。パルス波のパルスウィズを 50%に設定し、矩形波として出力することも可能です。 FM インプット (FM CONTROL) :周波数変調用(FM)の入力接続ジャックです。 キー・フォロー(KBD CV) :キー・フォローに内部接続されています。 サンプル&ホールド(S/H out) :サンプル&ホールドに内部接続されています。 ADSR エンベロープ(ADSR) : ADSRエンベロープに内部接続されています。 オシレーター1 Squere (VCO1 Square): オシレーター1の矩形波に内部接続されています ノイズ(NOISE GEN) :ノイズ・ジェネレーターに内部接続されています。 5.1.2.3 オシレーター3 :上下4オクターブ分のオクターブ・レンジ設定です。 レンジ (4'8'16'32'LF) 変調用の低周波(LF)に設定することも可能です。 **周波数設定(INIT, OSC, FREQUENCY)**:半音ずつチューニングします。上下2オクターブまで変更 可能です。 ファイン・チューン (FINE TUNE):ファイン・チューンを設定します。最大半音まで調節可能です。 オーディオ出力(triang, Sin, Saw, Pulse):三角波、サイン波、ノコギリ波、パルス波を出力する 4つの接続ジャックです。 :三角波、サイン波、ノコギリ波、パルス波のパルスウィズ パルスウィズ(PULSE WIDTH) (パルス幅)を設定します。パルス波のパルスウィズを 50%に設定し、矩形波として出力することも可能です。 FM インプット (FM CONTROL) :周波数変調用(FM)の入力接続ジャックです。 キー・フォロー(KBD CV) :キー・フォローに内部接続されています。 • ノイズ(NOISE GEN) :ノイズ・ジェネレーターに内部接続されています。 • ADSR エンベロープ (ADSR) : ADSRエンベロープに内部接続されています。 :オシレーター2のサイン波に内部接続されています オシレーター2 Sin(VCO2 sin)

- オシレーター2 Triangle (VCO2 Triangle):オシレーター2の三角波出力に内部接続されています。
- ▶ 3 つのオシレーターともチューニングは《INIT.OSC FREQUENCY》スライダーで設定し、半音単位で上下2オクターブまで設定可能です。
- ▶ ファイン・チューンは、《 FUNE TUNE 》 スライダー+/- で、最大半音まで設定可能です。
- レンジ・スイッチによって最大 4 オクターブ分オシレーター・レンジを切り替えることができます。レンジを低周波(LF)に設定することでモジュレーションの LFO ソースとして使用することもできます(サウンドは聞こえません)。
- ▶ 《 PULSE WIDTH 》でオシレーター2、3のノコギリ波 《 sawtooth 》、三角波 《 triangle 》、パルス 波 《 pulse 》のパルス幅を設定します。

オシレーター1は同時に使用可能なノコギリ波と矩形波、オシレーター2と3はノコギリ波、サイン 波、三角波、パルス波を出力可能です。

フリケンシー・モジュレーション入力 (FM CONTROL) やパルスウィズ・モジュレーション (PWM) は、あらかじめエンベロープや LFO など、他のモジュールの出力を利用してコントロールすることが できます。例えばオシレーター1 をキー・フォローやサンプル&ホールド、ADSR エンベロープ、オ シレーター2 サイン波などによって変調するも可能です。アープ 2600 V は、これらの出力をあらかじ め内部で接続することでシンセサイザーの操作性を高めています。

補足:オシレーターのレンジを LF に設定した場合、その他のレンジに比べて CPU への負荷が軽減さ れます。したがって低い CPU パワーでコントローラーを変調させることが可能になります。

モジュレーションのレイトを設定するには、各ジャックの上にあるスライダーで変更します。 モジュレーションのほかのソースを互いのインプットに接続することも可能ですので、さらに音色作 成の可能性が広がります。

従来のキー・フォロー設定(普通のスケール)に戻すには、(KBD CV)スライダーを完全に上げて ください。

以下はアープ 2600 V のオシレーターで使用される波形図です。

ノコギリ波 (Sawtooth)

矩形波(Square)

三角波(Triangle)

サイン波 (Sin)

5.1.3 フィルター (VCF)

オリジナルのアープ 2600 はレゾナント・ローパス・フィルターのみを搭載していましたが、アープ 2600 V では強力なマルチモード・フィルターを搭載しています。「ローパス 24dB(オリジナルのア ープ 2600 と同じ)」とアープ 2500 モジュラーに搭載されていた「ローパス 12dB」、「ハイパス 12dB」、「バンドパス 12dB」、「ノッチ 12 dB」の5 種類のフィルターから選択して使用することが 可能です。フィルター・モジュールの右上に位置するスイッチで選択します。

フィルターはオシレーターと同様に、オーディオ接続(ミキサー)と内蔵モジュレーション・インプットを装備しています。

周波数(INIT. FILTER FREQUENCY)	: フィルターのカットオフ周波数を 10Hz から 10KHz
	の間で設定します。
ファイン・チューン(FINE TUNE)	: フィルターのカットオフ周波数のファイン・チュー
	ンを設定します。
レゾナンス(RESONANCE)	: フィルターのレゾナンスを設定します。
ノッチ周波数(NOTCH FREQUENCY)	: ノッチの周波数をカットオフ周波数とは別に設定し
	ます。
フィルター・タイプ(LP24,LP12. HP12 ,BP	12, NOTCH) :フィルター・タイプを選択します。
	(LP 24, LP 12, HP 12, BP 12 , NOTCH)
オーディオ出力(out)	:フィルターのオーディオ出力ジャックです。
オーディオ入力(AUDIO)	: フィルターのオーディオ入力ジャックです。
RING MOD	: リング・モジュレーターに内部接続されています。
VCO1 Square	: オシレーター1 の矩形波に内部接続されています。
VCO2 Pulse	: オシレーター2 のパルス波に内部接続されています
 VCO3 sawtooth 	:オシレーター3のノコギリ波に内部接続されていま
	す
NOISE GEN	: ノイズ・ジェネレーターれ内部接続されています。

FM インプット (CONTROL)

- キー・フォロー (KBD CV)
- ADSR エンベロープ (ADSR)
- オシレーター2 Sin (VCO2 Sin)
- :周波数変調用(FM)の入力接続ジャックです。
- :キー・フォローに内部接続されています。
- : ADSRエンベロープに内部接続されています。
- :オシレーター2のサイン波に内部接続されています

従来のキー・フォロー設定(普通のスケール)に戻すには、(KBD CV)スライダーを完全に上げて ください。

フィルター・モジュールには、カットオフ周波数設定とレゾナンス設定があります。

ノッチ・フィルターの周波数設定(ノッチ・フリーケンシー)は、通常のフィルター・カットオフ周 波数とは分けられています。アープ 2500 モジュールに搭載されていた特有のパラメーターで、ノッ チ・フィルターをロー、ハイシェル・フィルターに変換します。

接続されている他の全てのモジュレーション入力は、スライダーを上げることで変調量を設定します。 右クリックでスライダーを操作するとさらに細かい値で設定することができます。ジェネレーター (エンベロープ、オシレーター、シーケンサー)の出力から受け取る信号のモジュレーション変化量 は最大 +/-9 オクターブです。

フィルター・タイプ:

5.1.3.1 ローパス・フィルター 24dB / オクターブ (LP 24)

ローパス 24dB フィルターはアープ 2600 の代表的なフィルターです。カットオフ周波数で設定した周 波数以上をカットします。

このフィルター以外の4つのフィルターはオリジナルのアープ2600には搭載されていませんでした が、アープ2500に搭載されていたフィルターです。それら全ては12 dB / オクターブのフィルタリン グ・スロープを使用しています。さらに音色作成の可能性を広げるため、アープ2600 V にはこれら のフィルターも搭載しています。 5.1.3.2 ローパス・フィルター 12dB / オクターブ (LP 12)

ローパス 12 dB フィルターは、ローパス・フィルター 24 dB / オクターブと同じ要領で動作します。 24dB のフィルターに比べフィルタリング・スロープが少し遅いので、多少違った結果が得られます。

ハイパス・フィルターはローパス・フィルターの逆です。カットオフ周波数で設定した周波数以下を カットします。

5.1.3.4 バンドパス・フィルター 12dB / オクターブ (BP 12)

バンドパス・フィルターはハイパス・フィルターとローパス・フィルターを組み合わせたフィルター です。設定したカットオフ周波数の両サイドの周波数帯をカットします。

^{5.1.3.3} ハイパス・フィルター 12dB / オクターブ (HP 12)

5.1.3.5 ノッチ・フィルター 12dB / オクターブ (NOTCH)

ノッチ・フィルターはバンドパス・フィルターと反対にカットオフ周波数で設定した周波数をカット し、その両サイドの周波数を通過させます。

《RESONACE》スライダーを上げるとカットした周波数帯をより強調させることができます。

ノッチ・フィルター

注意:レゾナンスを上げすぎるとカットオフ周波数で設定した周波数帯が強烈に強調されるため、耳 障りなサウンドになることがあります。

5.1.4 エンベロープ

アープ 2600 Vには 2 種類のエンベロープが搭載されています。

1つめは ADSR エンベロープで4種類のパラメーター(アタック・タイム、ディケイ・タイム、サス ティン・レベル、リリース・タイム)を持っています。エンベロープは信号の入力後(ノートオン)、 《Attack》、《Decay》の処理をおこない、《Sustain》で設定したレベルを保持します。入力された 信号が終わると(ノートオフ)《Release》の処理に移ります。もう1つのエンベロープはAR エンベ ロープで《Attack》と《Release》パラメーターを装備したエンベロープです。

ADSR エンベロープとAR エンベロープ

アタ	ック() :ア	タック	・タイ	ムを設定	します。
----	-----	--	------	-----	-----	------	------

- **ディケイ(D TIME)**: ディケイ・タイムを設定します。
- ホールド(SVOLT) : サスティン・レベルを設定します。
- **リリース (R TIME)** : リリース・タイムを設定します。
- 出力 (out) : エンベロープ・出力信号です。

5.1.4.2 AR エンベロープ

アタック(A TIME): アタック・タイムを設定します。 **リリース(R TIME)**: リリース・タイムを設定します。

5.1.4.3 トリガー・モード (スイッチ)

トリガー入力(S/H GATE):外部トリガー信号のインプット接続ジャックです。サンプル&ホー ルドのクロックに内部接続されています。

出力タイプ(GATE)	: ゲート・タイプ信号の出力接続ジャックです。鍵盤でノートオンし
	ている限りトリガー信号が出力されます。
出力タイプ(TRIG)	: トリガー・タイプ信号の出力接続ジャックです。鍵盤を弾くたびに
	サスティン・タイムが最小に向かって減少します。
トリガー・スイッチ	: エンベロープのトリガー入力先を選択するスイッチです。入力先を
	鍵盤、もしくはサンプル&ホールド・クロックから選択することが
	できます。この機能は、クロック・サイクルごとにエンベロープに
	影響を与えます。

5.1.5 アンプ (VCA)

アンプは音色作成における最終ステップで、音色全体の音量を設定するモジュールです。このモジュ ールは以下のコントローラーによって構成されています:

ゲイン(GLOBAL VOLUME)	: シンセサイザー全体のボリュームを設定します
オーディオ入力(AUDIO)	:オーディオ入力接続ジャックです。フィルター(VCF)と
	リング・モジュレーター・オーディオ出力(RING MOD)
	に内部で接続されています。
モジュレーション入力(LIN, EXP)	: モジュレーション入力接続ジャックです。AR(AR)、
	ADSR エンベロープ(LIN ADSR)に内部で接続されて
	います。

アンプ・モジュール (VCA) s

5.1.6 ノイズ・ジェネレーター

ノイズ・ジェネレーターはホワイト・ノイズとピンク・ノイズ、低周波ノイズを発生し、高い周波数 帯をフィルタリングするローパス・フィルターを装備しています。ホワイト・ノイズやピンク・ノイ ズの周波数は微調整することも可能です。

ノイズ・ジェネレーター

ローパス・フリケンシー (white / pink / low freq)

ノイズ・ボリューム(max / min) ノイズ・ジェネレーター出力(NOISE GEN out)

- : ローパス・フィルターのカットオフ周波数 を設定します
- :ノイズ・ボリュームを設定します。
- : ノイズ出力接続ジャックです。

5.1.7 ボルテージ・プロセッサー

このモジュールは、ミキサー / インバーター / ラグ・プロセッサーによって構成されています。

ミキサーは最大8つのオーディオやモジュレーション入力を調節して1つ(もしくは数個)のアウト プットとして出力することができます。

インバーターは入力信号を反転することができます。このスイッチをクリックするとモジュレーションのエンベロープなどが反対になります。たとえば、モジュレーション・ホイールを上げてフィルターのカットオフ周波数の値を低く設定することなどが可能になります。

ラグ・プロセッサーは入力信号を滑らかにします。例えば、LFO からの矩形波がラグ・タイムを上げることにより三角波に近くなっていきます。

ボルテージ・プロセッサー

入力ジャック x 8 (in A / B)

バランス・スライダー x 4 (mix A / B) リンク・スイッチ x 3 (Link)

インバーター・スイッチ x 4 (inv) ラグ・プロセッサー (つまみ) x 4 出力ジャック x 4 (out)

- : オーディオ、またはモジュレーション信号の入力 接続ジャックです。
- :2つの入力信号のバランスを設定します。
- : スイッチをオンにするとすぐ下のラインの入力信号 と信号をミックスし、複数のラインを1つの信号と して出力することができます。
- : 入力信号を反転します。
- :入力信号を滑らかにします。
- : オーディオ、またはモジュレーション信号の出力 接続ジャックです。

5.1.8 サンプル&ホールド・ジェネレーター

このモジュールは、サンプル&ホールドに入力された信号や外部インプット入力信号(インプットに 接続されているトリガーのソース)をサンプリングすることができます。サンプリングした値を利用 して変調させることができるため、ノイズのような信号をサンプリングすることによりランダムな変 調を可能にします。また、このモジュールはあらかじめノイズ・ジェネレーターに内部接続されてい ます。

外部クロック・ソース《 ext click in 》に接続した信号を利用してサンプル&ホールドのスピード(タイミング)を操作することも可能です(例えばオシレーターの波形出力など)。

レベル (LVL)	: サンプル&ホールドのモジュレーション・レベルを設定し
	ます。
レイト (RATE)	: サンプル&ホールドのクロック・スピードを設定します。
外部入力(NOISE GEN)	: オーディオ、またはモジュレーション用の外部入力信号
	接続ジャックです。ノイズ・ジェネレーターに内部接続
	されています。
サンプル&ホールド出力(S/H out)	: サンプル&ホールド出力ジャックです。
内部クロック出力(int Clock out)	:サンプル&ホールドの内部クロック出力接続ジャックです
外部クロック入力(Ext Clock in)	: 外部クロック入力ジャックです。
MIDI 同期(midi sync)	: 外部 MIDI シーケンサーとのクロック同期スイッチです。

5.1.9 エレクトロニック・スイッチ (electro switch)

エレクトロニック・スイッチ・モジュールは入力AとBの2つのソースをクロック接続スピードによってスイッチ(逆転)し、モジュレーション・ソースを作成します。

エレクトロニック・スイッチ

例:

- ▶ オシレーター1の矩形波を入力Aに接続し、オシレーター2のサイン波を入力Bに接続します。
- ▶ 次に 2 つのオシレーターをロー・フリケンシー・ポジション (LF) に設定し、コース・チューン ≪ INIT. OSC FREQUEMCY ≫ を 0.3Hz に設定します。
- ▶ エレクトロニック・スイッチの出力 C を、例えばオシレーター 3 のフィルター・モジュレーション入力に接続します。
- ▶ サンプル&ホールドのクロック・スピード 《 RATE 》を下げ、2 つのモジュレーションの揺れが はっきりと聞こえるように調節します。

 入力(A/B)
 : オーディオ、モジュレーション信号の入力ジャックです。

 出力(C)
 : 信号AとBを合成した信号の出力ジャックです。

 外部クロック入力(ext clock in)
 : 外部クロック接続ジャックです。サンプル&ホールド・クロックに内部接続されています。

5.1.10 エンベロープ・フォロワー

エンベロープ・フォロワーは、外部(内部)ソースからのオーディオ信号へのモジュレーション生成 を可能にします。プリ・アンプのボリュームによってエンベロープ・フォローの効果を設定します。 エンベロープ・フォロワーの **« PRE AMP »** スライダーを低くするほど内部ソースで変調させる割合 が増加します。

プリ・アンプ

エンベロープ・フォロワー

- ホスト・アプリケーションからドラム・サンプルなどのオーディオ・ファイルを再生し、プリ・ アンプのボリュームを上げます。
- ▶ エンベロープ・フォロワーの出力 (out) を VCA のモジュレーション入力に接続します。
- ▶ アンプ (VCA) モジュールの AR モジュレーション・レイトを上げます。
- ▶ エンベロープ・フォローワー・レベルも同様にします。ドラムループのエンベロープと VCA のボ リュームが変調されます。

オーディオ入力(PRE AMP) : エンベロープ・フォロワーのオーディオ入力ジャックです。 出力(Out) : オーディオ信号の出力ジャックです。

5.1.11 リング・モジュレーター

リング・モジュレーターは2種類の信号を掛け合わせて複雑な倍音を生成することができます。これ により手軽にメタリック・サウンドを作成できます。

リング・モジュレーター

: オーディオ入力接続ジャックです。
オシレーター1のノコギリ波、オシレーター2の
サイン波に内部接続されています。
:リング・モジュレーターの出力ジャックです。

5.1.12 トラッキング・ジェネレーター

トラッキング・ジェネレーターはアープ 2600 V のオリジナル・モジュールです。このモジュールは まったく新しいタイプのモジュレーションをリアルタイムに生成することが可能です。エンベロープ やより複雑な LFO 波形を作るためのモジュレーション・ソースとしても使用可能です。

トラッキング・ジェネレーター

主要インターフェース:

オーディオ入力(in) x4 オーディオ出力(out) x4 スムース(Smooth) x4 編集ボタン(edit) x4 周波数設定(freg) x4

- 波形編集ウインドウ
- アンドゥ/リドゥ機能

エディット画面(CURVE EDITOR)

ドローイング・ツール(鉛筆ツール) イレーサー・ツール(消しゴム・ツール) ライナー・ツール(直線ツール) カーブ・ツール(曲線ツール) ノイズ・ツール サイン・ツール スクエア・ツール

:オーディオ信号の入力ジャックです。

:オーディオ信号の出力ジャックです。

- : トラッキング・カーブの滑らかさを設定します。
- :トラッキング・カーブ編集モードを開くボタンです。
- :変調させるスピードを設定します。
 - : 描いたカーブの修正や、または元に戻す機能ことが できます。
 - : トラッキング・カーブの編集画面です。
 - : トラッキング・カーブの作成ツールです。
 - :既存の信号を消すツール
 - : 直線的なトラッキング・カーブを描くツールです。
 - : 放物線なトラッキング・カーブを描くツールです。
 - :既存のトラッキング・カーブにノイズを加えます。
 - : サイン波のトラッキング・カーブを描くツールです
 - : スクウェア波のトラッキング・カーブを描くツール です。

波形エディット・ウインドウ

○カーブ作成のヒント: (放物線カーブを作る)

• カーブ・ツールを選択し、編集画面をクリックしてカーブの始点を決める。

ドラッグ(クリックしたまま)して大まかなカーブを描き、クリックを離す。

• この時、マウスをドラッグすることで放物線の曲がり具合を調整することができます。

最後にマウスをクリックし、放物線を確定します。

これはサウンドにリバーブ効果を加えるモジュールです。

リバーブ・エフェクト

左チャンネル・レベル(REVERB←)	: 左側チャンネルのリバーブ出力レベルを設定します。
右チャンネル・レベル(REVERB →)	:右側チャンネルのリバーブ出力レベルを設定します。
左出力(LEFT out)	: 左チャンネルの出力ジャックです。
	(リバーブ有、もしくは無)
右出力(RIGHT out)	: 右チャンネルの出力ジャックです。
	(リバーブ有、もしくは無)
左ドライ入力(L in)	: 左チャンネルのドライ入力ジャックです。
右ドライ入力(R in)	: 右チャンネルのドライ入力ジャックです。

5.1.14 コーラス、ディレイ・エフェクト

コーラス・エフェクトは《rate》《depth》《dry/wet》スライダーで、それぞれスピード、深さ、 原音とエフェクト処理された音のバランスを設定します。

コーラス・エフェクト

ディレイ・エフェクトは《time L》、《time R》スライダーで左右チャンネルのディレイ・タイムの ディレイ・タイム、《feedb L》と《feedb R》スライダーでエフェクト処理された音のゲインを設定 します。《dry/wet》スライダーは原音とエフェクト処理された音のバランスを設定します。

《midi sync》はホスト・アプリケーションのテンポに、ディレイのリターン・タイムを同期させます。

ディレイ・エフェクト

5.1.15 コントローラー (CV control)

以下のモジュレーション出力は MIDI キーボードのリアルタイム・コントローラーでシンセサイザー パラメーターをコントロールすることができます。

コントローラー

ピッチベンド・ホイール(pitch bend)	: ピッチベンド・ホイールによるオシレーターの
	ピッチ変化をコントロールするための出力ジャッ
	クです。
モジュレーション・ホイール(mod wheel)	: モジュレーション・ホイールによる変調をコント
	ロールするための出力接続ジャックです。
ベロシティー(velocity)	:ベロシティー・コントロール用の出力ジャックです
アフタータッチ(after touch)	:アフタータッチ・コントロールの出力ジャックです
キー・フォロー出力 x1 と x 4 (KYBD CV out)	:キー・フォローx1、キー・フォローx4の出力
	ジャックです。

5.1.16 キーボード・インターフェース (3620 タイプ)

キーボード・インターフェースはキーボード演奏に必要なパラメーターを全て装備しています。モノフォニックもしくはポリフォニックでのプレイモード、ポルタメント、LFO(主にビブラートに使用)、キーボード・トリガー・モード等です。

ポルタメント・スイッチ入力 :ポルタメントのオン/オフをコントロールするための入力 ジャックです。 フット・スイッチ出力 :フット・スイッチの出力ジャックです。コントロール・ チェンジ64番に対応しています。 サスティン・トリガー入力 : サスティンのオン/オフをコントロールするための入力 ジャックです。 ピッチベンド・レンジ設定 : ピッチベンド・レンジを設定します。 ピッチベンド・ホイール :3つのオシレーターの周波数を同時に変調します。 ポルタメント・スイッチ :ポルタメントのオン/オフを設定します。 ポルタメント・タイム :ポルタメント・タイムを設定します。

5.1.17 グローバル・セッティング

グローバル・セッティングでは演奏モードやチューニングなどシンセサイザー全体に関わる項目を設 定するセクションです。

グローバル・セッティング

グローバル・チューニング	:3つのオシレーター全体のチューニングを設定します。
チューニング・スイッチ	: オンにすると 440Hz の信号を出力します。
プレイモード	: キーボードのプレイモードをモノフォニック、ユニゾン、
	ポリフォニックから選択するセレクターです。
デチューン・ポリフォニック・ボイス	: ユニゾン・モードでのデチューンを設定します。
トリガー・モード	:キーボード・ノートのトリガー・モードを
	レガート / リトリガーから選択します。
サスティン・コントロール	: サスティンを制御します。
リトリガー設定	: キーボードのリトリガーについて設定します。Kbd に設定
	すると鍵盤を押している間トリガーし続けます。
	auto repeat に設定すると一度鍵盤を押すだけでトリガーし
	続けます。

5.1.18 ロー・フリケンシー・オシレーター (LFO)

ロー・フリケンシー・オシレーターはモジュレーションのソースとして頻繁に使用されます。音を変 調させたり、ビブラート、トレモロ・エフェクトなどに使用したりします。

オシレーターも LFO として使用することができますが、この LFO モジュールを搭載したことで3オシレーターをフルに使用した音色の作成が可能になりました。

LFO モジュール

LFO スピード(LFO SPEED)	: LFO のクロック・スピードを設定します。
LFO ディレイ(LFO DELAY)	: LFO のディレイ・タイムを設定します。
ビブラート・デプス(VIBRATO DEPTH)	: ビブラートの深さを設定します。
MIDI 同期(midi sync)	: LFO とホスト・アプリケーションのテンポを同期
	させます。
三角波出力(LFO triangle)	: 三角波の低周波を出力します。
矩形波出力(LFO Square)	: 矩形波の低周波を出力します。
ノコギリ波出力(LFO Saw)	: ノコギリ波の低周波を出力します。
サイン波出力(LFO Sine)	: サイン波の低周波を出力します。
外部ビブラート入力(EXT VIBRATO in)	: 外部 LFO ソースの入力です。

5.1.19 アープ・シーケンサー

このモジュールはオリジナルのアープ・シーケンサー(モデル 1601)と同じ仕様のもので、70年代から 80年代初期まで幅広く使用されていました。

このモジュールで、メロディック・シーケンス、パラメーターの変調シーケンス(フィルター操作)を組むことができます。

シーケンス・ステップ設定

16 シーケンサー・ステップの設定と管理

 (1) 16 ステップ出力レベル(2x8)
 :各シーケンス・ステップのチューニング・レベルと モジュレーションの設定をおこないます。
 :バス 1、2、3
 :バス 1、2、3
 :バス 1、2、3のステップ・トリガー設定です。
 :バス 1、2、3の出力ジャックです。
 :入力ジャックの位置を定めます。
 :シーケンサー・クロック出力
 :シーケンサー・クロックです。

シーケンサー・オシレーター設定と管理

(6)	スキップ / リターン	: ステップのスキップ、もしくはステップ1にもどる設定を
		するパラメーターです。(Skip / Off / Reset)
(7)	スキップ・ステップ	: ステップのマニュアル選択ボタンです。(step)
(8)	リターン入力	: ステップ1に強制的に戻る入力ジャックです。 (reset)
(9)	スタート/ストップ入力	: トリガー、もしくはゲート信号のシーケンサーをスタート
		させる入力ジャックです。
(10)	トリガー / ゲート・スイッチ	: シーケンサーをスタートさせる信号を選択するスイッチ
		です。(trig / gate)
(11)	スタート / ストップ・ボタン	: シーケンサーをマニュアルでスタート、ストップさせる
		ボタンです。(Start / Stop)
(12)	スタート / ストップ・ジャック	: シーケンサーのスタートとストップを制御する信号の
		入力ジャックです。(Start / Stop)
(13)	スタート & ストップ・ジャック	: シーケンサーのスタート、ストップをペダルやキーボード
		によって行うための入力端子です。
(14)	クロック周波数	:シーケンサーのクロック・スピードを設定します。
		(Clock Freq)
(15)	クロック周波数出力	: シーケンサー・クロック出力の入力ジャックです。
		(Clock out)
(16)	クロック FM	: クロックのモジュレーション・レイトを設定します。
		(FM)
(17)	FM 入力	:《 gate 》入力に内部接続されているクロック周波数の
		モジュレーション入力ジャック。(Clock FM)
(18)	パルスウィズ・モジュレーション	':パルスウィズ信号のモジュレーション・レイトを設定
		します。 (Pulse width)
(19)	パルスウィズ入力	: パルスウィズ・モジュレーションの入力ジャックです。
		(PWM)

- シーケンサーの入力 / 出力設定
 - (20) クォンタイズ出力 A / B :正確に半音単位でチューニングされたステップ信号の出力
- (21) CV 入力
- (22) クォンタイズ入力 A / B
- (23) シーケンサー出力 A / B
- ジャックAとBです。(QUANTIZED out A / B)
 - :シーケンサーのトリガーを管理する入力ジャックです。 (CV input)
- : クォンタイズするオーディオ信号の入力ジャックAとB です。 (inputs A / B)
- :各ステップでチューニングした音程でオーディオ信号を 出力するジャックです。音程は各ステップで設定された 細かい設定値のまま出力されます。

(Sequencer outputs A / B)

○ステップの設定例:

1) 途中のステップをスキップする

はじめにバス・マネージャーでスキップさせるステップのバスを3に設定します。(例はステップ2 と5をスキップさせます)

スキップするステップのバスを3に設定する

次にオシレーター部分のスキップ/リターン・スイッチを上にし、スキップ・モードにします。これ によりバス3に設定したステップは再生時にスキップされます。

バス3をスキップ・モードにする

それではシーケンサーを再生してみましょう。バス3に設定したステップがスキップされて再生され ます。

2) 再生の途中で先頭のステップに強制的に戻す

この方法は5ステップや12ステップのシーケンスを作成するときに有効な方法です。

強制的に先頭に戻したいステップをバス3に設定します。設定方法は先ほどの例と同様です。 例として5ステップを再生した後、先頭に戻るシーケンスを作成してみましょう。

はじめにステップ5のバスを3に設定します。

シーケンスの最後のステップのバスを3に設定する

次にオシレーター部分のスキップ/リターン・スイッチを下にし、リセット・モードにします。これ によりバス3に設定したステップで強制的に先頭のステップへ戻り再生されるようになります。

Bus 3 Mode Reset	step
	, or the set

バス3をリセット・モードにする

○バスの設定:

アープ 2600 V ではシーケンサーの各ステップを 3 系統(バス 1.、2、3)のトリガー出力として使用 することができます。たとえばバス 1 のステップだけに ADSR エンベロープをかけてアクセントをつ けるといったことも可能です。

それでは実際にその効果を確かめてみましょう。はじめにプリセット・バンク 《 J.M.Blanchet 》のサブ・バンク 《 Basses 》から 《 JMB_Simple1 》を選択しましょう。

シーケンサーを鍵盤からスタートできるよう、シーケンサーの「スタート&ストップ・ジャック」 () と AR エンベロープの GATE ジャック () を接続します。

シーケンサーと AR エンベロープの接続

バス1だけ ADSR のエンベロープがかかるようシーケンサーのバス1出力(ープを接続します。

)と ADSR エンベロ

バス1出力と ADSR エンベロープの接続

次に ADSR エンベロープをかけたいステップのみバスを1に設定します。ここではステップ1と5を バス1にしてみましょう。

鍵盤を弾いてみてください。ステップ1と5の部分だけフィルター・エンベロープがかかっていることが確認できると思います。同様にバス2や3も他のトリガー出力として使用することが可能です。シーケンサーのクロックFMやARエンベロープなどいろいろとお試しください。

6 減算方式シンセサイザーの基礎

減算方式シンセサイザーは、シンセサイザー史の中でも歴史があり、最も普及している方式です。こ の方式は、60年代のモーグ・アナログ・シンセサイザーで開発され、その後登場した ARP (アープ)、 Buchla (ブックラ)、Oberheim (オーバーハイム)、Sequential Circuits (Prophetシリーズ)、ヤマハ (CSシリーズ)、Roland、Korg (MS/PSシリーズ)など、数え切れないほどのシンセサイザーで採 用されています。この技術は、現在のほとんどのデジタル・シンセサイザーでも使われており、アナ ログ・オシレーターの変わりにサンプリングされた波形やウェーブ・テーブルを使用しています。 アープ2600とアープ2600 V は、その減算方式シンセサイザーの極みとして、大きな可能性を秘めてい るシンセサイザーであると言えます。

6.1 3つの主要なモジュール

6.1.1 オシレーター (VCO)

オシレーター (Voltage Controlled Oscillator = ボルテージ・コントロールド・オシレーター) とノイ ズ・ジェネレーターは、アープ2600 V における音色作りのスタート地点であると言えます。オシレー ターの音色信号(波形や音程)は音色の基本となり、原形となる音色信号を加工してバイオリンや、 ギターなどの音色に仕上げていきます。

アープ **2600 V** のオシレーター設定

主要なオシレーターの設定は以下の通りです:

▶ ピッチはオシレーターの周波数によって決定されます。オシレーターの周波数は2 種類のコントローラーによって設定します。1 つはレンジ・セレクターで、これは基本となる周波数を決定するレンジ・セレクターです(周波数は Low/32/16/8/4 フィート単位で表示されます)。最も大きい数字である32フィートを選択した場合は最も低い周波数の音色を、最も小さい数字の4フィートを選択した場合は最も高い周波数の音色を生成します。2 つ目は≪INIT. OSC FREQUENCY ≫です。これは周波数を調節するコントローラーで、さらに細かい音程をチューニングすることができます。

- ▶ <u>ウェーブ・フォーム</u>は、オーディオ信号の基本的なサウンド(倍音の成分や潤沢)を決定します。 アープ 2600 V では、4 つウェーブ・フォーム(波形)が用意されています:
- Sawtooth (ノコギリ波) は、用意された 4 波形の中でも最も豊かな倍音を含んだ波形です(全ての帯域で倍音を含んでおり、高周波数にいくにつれ小さくなっていきます)。この波形はブラス や印象的なベース音色を作るのに有効です。

 Square(矩形波)は、ノコギリ波に比べて地味な音色で、奇数倍音のみを含んだ波形です。低周 波数において豊かな音色を持っており、低音を強調するためのサブ・ベースとして使用したり (矩形波をノコギリ波の1オクターブ下にセットする)、木管楽器(少しフィルターをかけてク ラリネットのような音色)を再現したりするときに有効です。

• **Triangle**(三角波)は、フィルタリングされた矩形波のような音色であると考えられます。その ため倍音ハーモニクスも大変乏しいものとなっており、サブ・ベースやフルートなどの音色を作 るときに有効です。

▶ Sin(正弦波)は 4 波形の中でも最も純粋な波形です。1 つの基本となる倍音ハーモニクスで構成され、湿った感じのサウンドを生成します。ベース音色の低周波数を補強するなど、他のウェーブ・フォームに対して存在しないハーモニクスを生成するためのモジュレーション・ソースとしても使用できます。

sine

PWM(Pulse Width Modulation=パルスウィズ・モジュレーション)は、波形の周期幅を変更します。 ≪ **PWM** ≫ スライダーを使って手動で設定することも、エンベロープや LFO などのモジュレーション を使用して設定することもできます。

オシレーター・シンクさせることで、さらに複雑な波形を作りだすことができます。たとえば、オシ レーター2をオシレーター1にオシレーター・シンクさせた場合、オシレーター1が0位置に達するた びにオシレーター2の波形は周期の途中であっても強制的に0位置にリセットされます。 オシレーター2のピッチを高くチューニングするほど複雑な波形を得ることができます。 (ここでは、2つのオシレーターのピッチが同じに設定されてない例を挙げて説明しています)。

波形の1周期

上の図は、オシレーター2が1にシンクされ、周波数を2倍にチューニングしている状態です。結果 として、通常の波形では作ることができない複雑な波形を作り出すことができます。

フリケンシー・モジュレーション (FM)は、1 基目の正弦波オシレーターを2 基目のオシレーターの モジュレーション入力に接続することによって作り出されます。アープ 2600 V では、モジュレーシ ョン・レベルを調節するリングを回すことにより、直接モジュレーション・レベルをコントロールで き、より豊かなハーモニクスを得ることができます。Square (矩形波)や、Sawtooth (ノコギリ波) を選択することで歪んだ音色を作ることができます。この方法は、面白い倍音を得られることがあり、 ベルや特殊な効果音を作るときに有効と言えるでしょう。

▶ ノイズ・ジェネレーター

ノイズ信号は全ての周波数を同じボリュームで発信します。ノイズ・ジェネレーターは、風や息などのような音色を生成するために使われます。アープ 2600 V ではホワイト・ノイズとピンク・ノイズの2種類のノイズが用意されています。ホワイト・ノイズは最も豊かなノイズ音で、もう一方のピンク・ノイズは一般的なシンセサイザーにもプリセットされている波形で、ホワイト・ノイズほどリッチな音ではありません。

注目すべきは、(特にフィルタリングされた状態において)ノイズはモジュレーション・ソースとしても使用可能であるということです。これにより、音色変化にランダムなバリエーションをつけることができます。

ARP2600 Vのノイズ・モジュール

6.1.2 フィルター (VCF)

オシレーターで生成されたオーディオ信号は、通常、フィルター・モジュール(Voltage Controlled Filter = ボルテージ・コントロールド・フィルター) へと流れていきます。フィルターはカットオフ 周波数で指定された周辺の倍音を削ります(これが減算方式と呼ばれる所以です)。フィルターは洗 練されたイコライザーと考えることができ、場合に応じて指定した周波数よりも低い周波数成分、も しくは高い周波数成分をカットすることができます。

必要のない成分をカットする傾斜をフィルター・スロープによって決めることができます。このフィ ルター・スロープは dB/Octave という単位で表されます。アナログ・シンセサイザーで使用されてい るフィルターは、通常 12dB/Octave もしくは、24db/Octave です。24dB/Octave タイプのフィルター は、12dB/Oct のフィルターよりも、強力なフィルタリングが可能です。

ARP2600 V のフィルター・モジュール

アープ 2600 V の 2 種類のフィルター・スロープ: 12dB/Octave もしくは、24db/Octave

アープ 2600 V では以下のフィルター・タイプから1つを選択して使用することができます。

• **ローパス・フィルター**(LPF)は、カットオフ周波数で指定した周波数よりも高い周波数成分を カットします。この設定によって、音色を明るくしたり暗くしたりすることができます。

このフィルターは通常の減算方式シンセサイザーにおいて採用されているタイプのフィルターです。 アナログ・シンセサイザーはもとより、今日のデジタル・シンセサイザーにおいても広く採用されて います。

 ハイパス・フィルター(HPF)は、ローパス・フィルターとは正反対にカットオフ周波数で指定 した周波数よりも低い周波数成分をカットします。余分な低周波数成分を取り除くときに有効で す。

バンドパス・フィルター(BPF)は、カットオフ周波数で指定した周波数成分を残して高周波数、および低周波数成分をカットします。特定の周波数を強調したい場合に有効です。縮み上がった音色を作ることができます。

バンドリジェクト(ノッチと表現されることもあります)は、カットオフ周波数で指定した周波数部分を著しくカットし、そのほかの周波数を残します。このフィルターは周波数帯域をいろいろ変化させるとおもしろい効果を生み出します。アープ2600 Vでは、LFOによってカットオフ周波数を変えることができます。これによりフェイズ効果に近い効果を得ることが可能です。

これらの4種類のフィルターはアナログ・シンセサイザーによく搭載されているタイプのフィルター です。

カットオフ周波数で指定した周波数帯のサウンドに独特のクセをつけるコントローラーにレゾナンス があります。レゾナンスは《Emphasis》、もしくは《Q》と表記されることもあり、カットオフ周 波数付近の周波数成分を強調することでサウンドを変化させます。レゾナンスの値を増加させるとカ ットオフ周波数以前の周波数成分は変わらず、カットオフ周波数以降の周波数成分が減少します。

アープ 2600 V では《RESONANCE》スライダーによってレゾナンスの発振量を設定します。

レゾナンスの発振量を増やすとフィルターはさらに精選され、カットオフ周波数帯域が増幅されます。 音色はピーピーと鳴るようになります。

レゾナンスのスライダーを高い値に設定すると、フィルターは次第に正弦波に近い音色を作り出しま す。この場合、キー・フォローを使用することでオシレーターの周波数とカットオフ周波数をコント ロールでき、メロディーを生成することができます。

6.1.3 アンプ (VCA)

アンプ (Voltage Controlled Amplifier = ボルテージ・コントロールド・アンプリファイアー) はフィル ターから (または、フィルターを経由せずオシレーターから直接) オーディオ信号を受け取り、信号 が直接スピーカーに流れる前に時間経過によるボリューム変化を調整します。

ARP 2600V のアンプ・モジュール

結論として、基本的なサウンドの流れは以下のようになります。

6.2 その他のモジュール

6.2.1 キーボード

キーボードのひとつをクリックすると単一の音(鍵盤の音程)が出力され、離すまで鳴り続けます。 事実上、オシレーターは音程が変わらない一定の持続音(ウェーブ・フォームのオーディオ出力)を 発します。キーボードは単に音を出力するだけでなく、フィルターのコントロールや音量の調節など、 様々な機能を持たせることもできます。

サウンドを発音や停止は、オシレーターに接続されたキーボードを使用します。キー(鍵盤)が押されると音色が再生され、離すとミュートされます。アープ 2600 V ではこの接続は MIDI によって内部 接続されています。

また、音色をキーボード・ノートに正しくチューニングしたい場合、キー・フォロー・モジュレーションを適用する必要があります(アナログ・シンセサイザーでは、通常1オクターブ毎に1ボルト電 圧が上がる仕組みになっています)。

外部 MIDI キーボードをお持ちでなくても、アープ 2600 V のバーチャル・キーボードで演奏すること も可能です。

6.2.2 エンベロープ・ジェネレーター (ADSR)

エンベロープ・ジェネレーターはアンプに接続されており、キーボードを押したときから離すまでの 音色の時間経過による変化を設定する役割をもっています。

エンベロープ・モジュール

ほとんどのエンベロープ・ジェネレーターは、以下の4つのパラメーターを持っています:

アタック・タイムは、キーボードが押されてから最大値へたどりつくまでの時間です ディケイ・タイムは、最大値にたどりついた音色がサスティン・レベルで指定されたレベルにたどり 着くまでの時間を設定します サスティン・レベルは、キーボードが押されている間、発音される音量レベルです

リリース・タイムは、鍵盤を離してから音色が消えるまでの時間です

アープ 2600 V はもう1つ簡易的なエンベロープ・ジェネレーター (AR) を搭載しています。 (アタック、リリースのみ)

AR エンベロープ・ジェネレーターは、フィルターのカットオフ周波数やオシレーターの周波数を変調する際に使用すると効果的です。

6.2.3 ロー・フリケンシー・オシレーター (LFO)

LFO は古典的なオシレーターと同じ特徴を持っており、20Hz 以下の周波数を作りだします。言い換えると、LFO をアンプに接続しても人間の耳ではその音を聞くことはできません。

ARP2600 VのLFO モジュール

LFO は音色そのものを作り出すものではなく、接続されたモジュールに対して周期的なモジュレーションを与えるために使用されます。たとえば:

LFO をアンプのモジュレーション入力に接続した場合、音色のボリュームは LFO のスピード(周波数)で設定された周期で出たり消えたりを繰り返します。これによってトレモロ効果を作りだすことができます。

ビブラート効果をつけるには LFO 出力の正弦波出力をオシレーターに接続します。これにより、オシレーターの周波数が上下しビブラート効果をつけることができます。

最後に、LFO 出力をレゾナンスの効いたローパス・フィルターに接続してみましょう。すると、ワウ ワウ効果を得ることができます。

LFO による VCA 変調

6.2.4 リング・モジュレーター

リング・モジュレーターは2種類の信号を掛け合わせて複雑な倍音を生成することができます。これ により手軽にメタリックなサウンドを作成することが可能です。

ARP2600 V のリング・モジュレーター

6.2.5 サンプル&ホールド

サンプル&ホールドは入力信号を標本化し、標本化した信号を試用してトリガー信号のタイミングご とに音色を変化させます。

サンプル&ホールドは不規則な値を一定時間毎に出力して音色を変化させることができますので、特 にランダムな変調するノイズを標本化し、音色を変化させると面白い効果が得られるでしょう。

VCOの矩形波やノコギリ波をサンプル&ホールドの入力端子に接続して、周期的にサンプリングすることも可能です。

ARP2600 V のサンプル&ホールド

スターウォーズに登場する R2D2 の声は「サンプル&ホールド」によって作られています!

最終的に全体のシンセサイザー・スペックは次のようになります:

- 3 基のオシレーター (VCO)
- ノイズ・ジェネレーター
- リング・モジュレーター
- サンプル&ホールド
- 2系統のミキサー(3つのVCO、ノイズ・ジェネレーター、リング・モジュレーターをミキシングしてフィルターとアンプへ送る)
- フィルター (VCF)
- アンプ (VCA:パンニングによりステレオ効果を演出可能)
- ADSR エンベロープ・ジェネレーター
- ARエンベロープ・ジェネレーター
- LFO
- バーチャル・キーボード

7 サウンド・デザインの基礎知識

この章では、5つの例を使用し、実際の音色作成やシーケンスの組み方を説明しています。この章は 大きく分けて以下の2パートに分かれています。まずは簡単な例からはじめ、徐々に複雑なものへと 解説していきます:

- 第1パートはサウンド・メイキング(音色作成)について説明します。ここでは、最も基本となるパッチング(オシレーター→フィルター→アンプ)から始め、より複雑な音色作成(複数の VCO, VCF, VCA,エンベロープを使った音色)までを紹介しています。
- 第2パートはシーケンサーの使用例を紹介します。

7.1 サウンド・シンセシス

7.1.1 簡単なパッチング

まず初歩的なモノフォニック音色のプログラム方法です。この例では次の4つのモジュールを使用します:

- 2 基のオシレーター (オシレーター1、2)
- 1 基のローパス・フィルター (VCF)
- 1 基のアンプ (VCA)
- 1 基のフィルター用 ADSR エンベロープ

これらのモジュールを使用することで、減算方式シンセサイザーの基本パッチングをおこなうことができます。

音色設定の例

- ▶ まずはプリセット音色《Templ_Blank》を選択してください。この音色は《Templates》バンク内のサブ・バンク《Temp_Synth》に収録されています。VCA アンプミキサー(VCF 出力)と、 VCA の入力 ADSR エンベロープが開いただけですので、この状態では鍵盤を弾いても音は出ません。
- ▶ フィルター・モジュール (VCF)の ≪ VCO1 Squere ≫ () の垂直スライダーを上げます。このスライダーでオシレーター1のボリュームを調節することができます。鍵盤を弾くと、フラットな継続音が鳴ります。

VCF モジュールの VCO1Squere スライダーを上げる

▶ 同じモジュール内の ADSR (^{▶▶▶}) スライダーを上げると ADSR エンベロープで音色をフィルター のかかり具合を調整することができます。

ADSR スライダーを上げる

▶ ローパス・フィルター ≪ INIT.FILTER FREQUENCY ≫ のスライダーを左いっぱいまで下げます。これによりローパス・フィルターの効果がおわかりいただけると思います。

カットオフ周波数を下げる

 フィルター1 の ADSR エンベロープのサスティンのスライダーを下げ、ディケイを完全に上げる と、デュレーションの短い音色ができます。

ディケイ・タイムを上げる

▶ ここで、VCF モジュールの 《 VCO2 Pulse 》() スライダーを上げます。するとオシレーター1とオシレーター2のユニゾン音色を作ることができます。《 Range 》 セレクターが LF になっている場合は 8'に変更しましょう。LF に設定されている場合はサウンドとして出力されません。

VCO2Pulse スライダーを上げる

▶ オシレーター1の《FINE TUNE》を使用して少しだけデチューンをかけます。これにより音色をより太く、厚くすることができます。

オシレーター2 に軽くデチューンをかける

▶ オシレーター2を1オクターブ下げます。VCO2の《Range》セレクターを《16'》に設定して ください。

オシレーターのレンジを16に変更する

▶ 最後に少しだけフィルターのレゾナンス 《 RESONANCE 》 スライダーを上げると、70 年代のベース風サウンドの完成です。

レゾナンス・スライダーを上げる

この音色を《bass1》として保存します。保存機能は現在の設定を保存し、後で音色を再編集することを可能にします。《SAVE AS》ボタンをクリックし、《new bank》(メニューの最下部)を選択してください。新しいバンクが作成されますのでバンク名、サブ・バンク名、プリセット名をつけてください。バンク名は音色作者名(たとえばあなたのイニシャル)、サブ・バンク名は音色のカテゴリー名(例:《basses》)などにするとわかりやすく管理することができます。

7.1.2 ポリフォニック・パッチング

先ほど作成した≪bass1≫をもとに、次の音色を作成します。

アープ 2600 V ではケーブルによるパッチングを行わなくても音色を作成することができますが、パ ッチングによってさらに複雑な音色を作り出すことも可能です。以下のモジュールを使用します:

- 3 基のオシレーター(オシレーター1、2、3)
- 2 基のローパス・フィルター (VCF)
- 1 基の出力 (VCA)
- 1 基のフィルター用 ADSR エンベロープ
- 1 基の出力用 ADSR エンベロープ
- 1 基のフィルター用 LFO
- ▶ オシレーター1 のノコギリ波出力からフィルターのオーディオ入力にケーブルを接続します。 VCO1 の≪ Saw ≫ 端子をクリックしたまま、VCF ミキサーの≪ VCO1 square ≫ 入力にマウスをド ラッグしてください。
- ▶ VCF モジュールの ≪ VCO2 Pulse ≫ スライダーを下げるとオシレーター1の音の変化がわかりやす くなります。音色がどのように変化したかを確認したい場合は、先ほどパッチングしたケーブル をはずしてみてください。ケーブルをはずすと元々の矩形波が発音されます。ではもう一度ノコ ギリ波出力を VCF に接続して次のステップに進みます。

オシレーター1の三角波を VCF モジュールの VCO1Squere に接続する

▶ オシレーター2 もオシレーター1 と同じ操作でケーブルをパッチングします。VCO2 の《Saw》 端子から VCF モジュールの《VCO2 Pulse》(
) 入力ヘケーブルを接続し、スライダーを上げて ください。 ▶ 次に VCF モジュールの 《 VCO3 Triangle 》() スライダーを上げ基本となる音色を完成させます。オシレーター3 基によるサウンドが確認できます。

VCO3Triangle スライダーを上げる

▶ 次に LFO を使用してサウンドに周期的な変化を加えます。シーケンサー・モジュールの左側にある《LFO》モジュールのサイン波出力(
) を VCF のコントロール入力《VCO2 sin》(
) に接続し、スライダーを上げてください。サウンドが周期的にフィルタリングされます。

LFO モジュールを使用して周期的に変調させる

- ▶ 音が何も聞こえなくなってしまった場合は、《INT.FILTER FREQUENCY》をゆっくり右方向へド ラッグし、カットオフ周波数の設定値を高くしてください。
- ▶ 《LFO SPEED》 スライダーで LFO の周期スピードを設定します。このタイプの音色にはゆっくりとしたスピードを選択すると効果的です。

LFO のオシレーター・スピードを設定する

▶ AR エンベロープのアタック・タイム 《 A TIME 》を 2000ms、リリース・タイム 《 R TIME 》を 750ms に設定します。次に ADSR エンベロープのディケイ・タイム 《 D TIME 》を完全に上げま す。このタイプのエンベロープ設定はバッキング用の音色に適しています。

エンベロープの設定

LFO モジュールの左にあるプレイモード・セレクターを « poly » に設定することにより、コードが弾 けるようになります(ポリフォニック設定)。最大同時発音数はツール・バーの « VOICE » ウイン ドウ(VOICE) をクリックして指定します。

ポリフォニック・モードと最大同時発音数の設定

 → オシレーター3の 《INT.OSC FREQUNCY 》を使用して音程を5度(《+5 semi-tones 》)、または 7度(《+7 semi-tones 》)上げることにより、音色をより厚くすることができます。

オシレーター3 をチューニングする

▶ この音色にステレオ感を演出するため、ディレイやコーラス・エフェクトを使用するのも効果的です。左スピーカーに下にあるコーラス/ディレイ・セクションを開き、エフェクトのセンド量を設定してください。ディレイ・タイムは、ホスト・アプリケーションの MIDI テンポに同期させることができます。

コーラスとディレイ効果を加える

▶ この音色を保存します。保存方法については以前のセクションをご覧ください。この音色は今後 音色作成のテンプレート音色としてお使いください。

7.1.3 トラッキング・ジェネレーターを使用したエフェクト

この例では、トラッキング・ジェネレーターを使用した変調方法をご紹介します。このトラッキング・ジェネレーターはオリジナルのアープ 2600 には存在しない新機能です。

《bass1》の音色をテンプレートとして利用し、以下のモジュールを使用します:

- 2基のオシレーター(オシレーター1、2)
- 1 基のローパス・フィルター (VCF)
- 1 基の出力 (VCA)
- トラッキング・ジェネレーター(フィルター変調用)
- トラッキング・ジェネレーターを使用し、フィルターのカットオフ周波数を変調するための LFO カーブ(モジュレーション・タイプ)を作成します。
- ▶ 右スピーカー・パネルを開くと表示されるトラッキング・ジェネレーターで、1 番上のオーディ オ出力(《 out 》)を、フィルターのモジュレーション入力《VCO2 Sin》(◎) に接続します。

トラッキング・ジェネレーターを開く

トラッキング・ジェネレーターのアウトプットを VCF モジュールの VCO2Sin に接続する

▶ 《 VCO2 Sin 》() スライダーを完全に上げます。このスライダーでモジュレーション・レイトを設定することができます。

モジュレーション・レイトの設定

※オーディオ出力端子の右側にある《 edit 》ボタンをクリックすると新たなウインドウが開き、トラ ッキング・ライン(変調させるための波形)を自由に描くことができます。

"edit"ボタンをクリック

▶ 波形編集ウインドウは3つのパートで構成されています:左側に4系統のトラッキングライン・ セッションを切り替えることができるボタン、中央に波形を描くウインドウ、その上にドローイ ング・ツール類が装備されています。

デフォルトではドローイング・ツールが選択されています。フリーハンドで自由にカーブを描いてみましょう。描き終わったら、鍵盤を弾いて音の変化を確かめてみてください。トラッキング・ジェネレーターの左側にある《freq》つまみ(「でつう)で変調させるスピードを設定することができます。

カーブを描く

- トラッキング・ライン(カーブ)を変更したい場合は、再度エディット画面を開いてラインを変更してください。エディット画面でカーブを変更するとすぐに変更が反映されます。波形編集ウインドウにはさまざまなカーブを描くツールが装備されています(直線、曲線、ノイズ、サイン波、矩形波…)。
- ▶ トラッキング・ジェネレーターの4つのオーディオ出力を 《VOLTAGE PROCESSOR》のオーディオ入力1、2、3、4に接続すると4種類のトラッキング・ラインをミックスしてひとつのモジュレーションとして使用することができます。

トラッキング・ジェネレーターのアウトプットをボルテージ・プロセッサーに接続する

- ▶ はじめのミキサーラインの出力を 《 VCO2 Sin 》 () のモジュレーション入力に接続します。
- ◆ 《VOLTAGE PROCESSOR》の《mix A/B》スライダーで左右のオーディオ入力に接続している トラッキング・ラインの変調割合を調節することができます。スライダーを右いっぱににすると オーディオ入力2に接続したトラッキング・ラインのみが有効になります。

▶ 《mix A/B》 スライダーのすぐ下の 《LINK》 スイッチを ON にすると 《LINK》 スイッチの上下 のオーディオ入力ラインをリンクさせることができます。上記の例の場合、オーディオ入力 1、2 とオーディオ入力 3、4 がリンクします。これによって 4 種類のトラッキング・ラインの変調バラ ンスを調整しながらフィルターを変調させることが可能になります。

リンク・スイッチをオンにする

▶ もちろん、それぞれのトラッキング・ラインを個別にさまざまなコントローラーに使用し、複雑に変調する音色を作成することも可能です。

7.1.4 シーケンサーを使ってメロディーを作成

アープのシーケンサー(1601 タイプ)は 70 年代のシーケンサーとして高い人気を誇るシーケンサーです。アープ 2600 V ではこのシーケンサーにより幅広いサウンド・メイキングを可能にしています。

次の2つの例で、アープのシーケンサーを使ったメロディー作成とフィルターのカットオフ周波数を 変調させるパターンの作成を説明します。

▶ それでは再度《bass1》の音色を選択してください。この音色を使ってメロディー・シーケンスの基本とフィルターのカットオフ周波数を変調させるシーケンスを説明します。

« CV input » はノートを受けるとシーケンサーをトリガーするようにあらかじめキー・フォローに接続されています。

▶ シーケンサー・モジュールの右側にある 《 QUANTIZED out A 》をオシレーター1の《KBD CV 》 に接続することにより、各ステップが正確に半音単位にチューニングされたシーケンスで再生さ れます。

"QUANTIZED output A"を VCO1のKBD CV に接続する

- ▶ シーケンサーのスタート・ボタンをクリックし、鍵盤を弾いてみてください(例: C4 など)。
 鍵盤を押している間、同じ高さのノートが 16 回発音されます。同じ音程のため 16 回発音されているかを聞き分けることは難しいかもしれません。
- ▶ 16 ステップの各スライダーを個別に操作してください。音程が変化しながらメロディーがループ して再生されます。

16 ステップの音程を設定する

▶ シーケンサー上にある《 Start/Stop 》ボタンをクリックすると、シーケンサーが停止します

スタート/ストップ・ボタンでシーケンサーを停止する

通常、16 ステップのシーケンサーですが、2 系統の独立した 8 ステップ・シーケンサーとして使用することもできます。 《 16/1 - 8/2 》 スイッチを 8/2 に設定すると 8 ステップのシーケンサーとして使用できます。

2系統の8ステップ・シーケンサーに変更する

ランダムにシーケンス(16,8 ステップ共通)を再生させたい場合は《 Sequential / random 》スイッチを《 random 》にしてください。

ランダム・シーケンス

7.1.5 シーケンサーで変調のパターンをシーケンスする

フィルターのカットオフ周波数を変調させるシーケンスを作成します。テクノ風のシーケンスとして使用すると効果的です。

先ほどの音色を、そのままテンプレートとして使用します。(音色を作っていない場合は7.1.4の セクションを参照してください)

- シーケンサーの出力 ≪ Sequencer outputs B ≫ を、VCF モジュールのモジュレーション入力 ≪ ADSR ≫ (□□) に接続し、スライダーを上げてモジュレーション・レベルを設定します。

Sequencer output B を VCF の ADSR 入力に接続する

ADSR スライダーを上げる

スタート・ボタンを押してシーケンサーをスタートさせます。鍵盤を弾きながらシーケンサー上の16ステップのスライダー値を変更してください。スライダーによって設定した値でフィルターのカットオフ周波数が変化することが確認できると思います。これはオート・ワウワウ・エフェクトと同じ効果です。

アープ・シーケンサーはフィルターのカットオフ周波数への使用に限らず、ほかのパラメーター (たとえばアンプ (VCA)、オシレーター(矩形波のパルス幅)にも使用することができます。

▶ シーケンサーを独立した 2 つの 8 ステップ・シーケンサーとして使用し、最初の 8 ステップをメ ロディー、残りの 8 ステップをモジュレーションなどに使用することもできます。この状態のま まシーケンサー下部にあるスイッチ≪16/1 - 8/2 ≫ を 8/2 に設定すると 2 つの独立した 8 ステッ プ・シーケンサーとして使用できます。VCO1 の KBD CV スライダーを上げてその効果をお確か めください。

シーケンサーのスタート&ストップ・ジャックと AR エンベロープの Gate 入力を接続すると、鍵盤のノートオン、ノートオフによってシーケンサーをスタート/ストップさせることができます。

これらの例でアープ 2600 V でのサウンド・デザイン方法を説明してきました。これらの例はあくま でも音色作成の参考例です。さまざまなパッチングを駆使して音色作成やシーケンス作成をお楽しみ ください。

8 アープ 2600 V の様々なモードでの使用方法

8.1 スタンドアローン・モードで使用する

アープ 2600 V アプリケーションは、シーケンサーから独立したインストルメントとして使用することができます(スタンドアローン・モード)。アープ 2600 V では、1 つ、または複数台のインストルメントとして開くことができ、マスターMIDI キーボードを使って演奏することができます。

注意! アープ 2600 V は、Windows と Mac OS X でご使用いただけます。 (Mac OS 9 非対応)

8.1.1 アプリケーションを立ち上げる

Windows 環境においてアープ 2600 V アプリケーションを起動するには、スタートメニュー → Arturia → ARP2600 V と進み、ARP2600 V を選択します。

Macintosh 用は、インストールしたフォルダーを開き、ARP2600 V アプリケーションのアイコンをダブルクリックします。

また、保存したアープ 2600 V のインストゥルメント・ファイルをダブルクリックすることによって、 直接 ARP2600 V を立ち上げることもできます。

8.1.2 初期設定の変更

「初期設定」ウインドウでは、アープ 2600 V の初期設定をおこなうことができます。また、ここで 設定したセッティングは自動的に保存されます。

初期設定を表示するには、Windows版の場合、「ファイル」メニューから「初期設定」を選択します。 Mac OS X版では、ARP2600 Vメニューから、初期設定を選択します。

初期設定		×
	לם אבאם לי	Direct X
	ᡟ᠋᠋᠋ᢖᡝᢊ᠄	SoundMAX Digital Audio
	サンプリングレイト:	44100
	遅延設定 : 48 ms	
	ノブ・モード:	
		ОК

初期設定ウインドウの設定例(Windows)

000	初期書	役定
	ドライバ	内蔵オーディオ
	サンプリングレイト	(44100
	遅延設定:9 ms	
	ノブ・モード	Circular 🗘
		Ok

初期設定ウインドウの設定例(Macintosh)

プロトコル(Windows版のみ):使用するオーディオ・プロトコルを選択します。使用しているサウンド・カードに ASIO に対応している場合は、ASIO プロトコルを使用することを推奨しています。 ASIO ドライバは DirectX ドライバより高いパフォーマンスを実現します。

ドライバ:使用するサウンド・カードに対応するドライバを選択します。

サンプリング・レイト: サウンド・カードで使用するサンプル周波数を選択します。

遅延設定: サウンド・カードとコンピューターのパフォーマンスに最適の遅延時間を設定します。遅 延設定を小さく選択した場合、コンピューターへの負荷が高くなり、音色を再生中に予期せぬ音切れ を引き起こすことがあります。

ノブ・モード:つまみのコントロール・モードを選択します。

1.直線モード(Linear)	•••	マウスを上下に直線的に操作することでつまみの値を設定し
2.回転モード(Circular)	•••	ます つまみをなぞるようにドラッグしてつまみの値を設定します

※ ホスト・アプリ追従モード (Circular relative) はホスト・アプリケーションの設定に追従します。

8.1.3 コントロール・バー

アープ **2600 V** は、MIDI 入力やオーディオの入出力のルーティングをコントロール・バーによって設定します。

Windows 版のコントロール・バー画面

 All
 Image: Split
 Image: Spl

Macintosh 版のコントロール・バー画面

8.1.3.1 MIDI に関する設定

コントロール・バーの一番左上のセクションでは、インストゥルメントに適用する MIDI 入力デバイ スを選択します。

インストゥルメントをコントロールするためのキーボードが接続された MIDI ポートと MIDI チャンネ ルを選択します。使用する MIDI チャンネルは 1~16 の任意のチャンネルを選択できます。また、 'AII'を選択すると全ての MIID チャンネルのコントロールを受信します。

8.1.3.2 キー・レンジの設定

キー・レンジは、インストゥルメントをコントロールするにあたり、使用する音程の範囲を決めるこ とができます。これにより、異なるゾーンごとに別々の音色を設定でき、ひとつのキーボード上でい くつかのインストゥルメントを演奏することができます。

この機能を使用するには、コントロール・バー上の 'Range (または Split) 'オプションをチェックし、 最も低いノートと最も高いノートを設定してキー・レンジを設定してください。

8.1.3.3 オクターブの設定

オクターブ設定では、キーボードのノートをオクターブ単位でトランスポーズできます。この機能は、 演奏したい音域をキーボードがカバーしていない場合や、キーレンジ・オプションを使用していると きに効果的です。

8.1.3.4 オーディオの入出力設定

コントロール・バー最後のセクションで使用するサウンド・カードやオーディオ・データの入出力先 を選択します。

選択したサウンド・カードが複数の出力先を持っている場合には、使用可能なオーディオ出力がリス ト形式で表示されます。リストの中から使用する入出力先を選択してください。

8.1.4 CPU 使用率について

CPU への負荷を確認することができます。この情報はアープ 2600 V のシンセシスが CPU に与えてい る負荷レベルをリアルタイムに表示します。

Windows 版では、コントロール・バーに直接、負荷状況を表示します。

Macintosh 版では、Window メニューから、Cpu を選ぶと表示されます。もしくは、ショートカット "コマンド・キー(*) + L"でも表示させることができます。

注意: この情報は、音色シンセシスに使用されるプロセッサーの負荷のみを表しており、OS 他を含め た全体のシステムの負荷を表しているのではありません。したがってシステム全体の負荷より低い負 荷が表示されていることになります。

8.1.5 パニック機能

何らかの原因でサウンドが再生され続けてしまう場合、全ての音を止める MIDI メッセージを送信することができます。

Windows 版では、コントロール・バー上の \pounds をクリック、Macintosh 版では、Help メニューから Panic コマンド (または、コマンド・キー (*) +オプション・キー (*) + P) をクリックしてサウンドを 強制的に止めることができます。

8.1.6 インストゥルメントの保存

インストゥルメントのパッチング、つまみ情報、その他オーディオ、MIDI 設定までを含めた現在の状態を保存することができます。

保存するには、「ファイル」メニューから保存を選ぶか、もしくは、「ファイル」メニューから名前 を付けて保存…を選択し、新しい名前をつけて保存します。

注意: アープ 2600 V アプリケーションでの保存は、インストゥルメントの設定を保存します。これは、プリセット・バンクの保存(Export)とは、なんら関係ありません。プリセット・バンクのエクスポートは日本語ユーザーマニュアル 32 ページ「4.1.3 プリセット・バンクのインポートとエクスポート」をご参照ください。

8.2 VST™

8.2.1 インストール

8.2.1.1 Windows の場合

インストール中に表示されるプラグイン・フォーマットの選択画面で VST オプションを選択してくだ さい。Cubase をご使用の場合、インストーラーは自動的に VST プラグイン・フォルダーを検出し、 プラグイン・ファイルをインストールします。Logic Audio など他の VST 互換性を持つシーケンサー をご使用の場合は、適切なフォルダーにプラグインのファイルを手動でコピーする必要があります。

プラグイン・ファイルは下記の場所にインストールされています:

フォルダー名 《 C:¥Program Files¥Arturia¥ARP2600 V 》 ファイル名 《 ARP2600 V.dll 》

8.2.1.2 Mac OS X の場合

Mac OS X の場合、プラグイン・ファイルはすべて自動的にインストールされます。インストール完 了後、VST プラグインに対応したホスト・アプリケーションから起動して使用することができます。

8.2.2 VST インストゥルメントとして使用する場合

アープ 2600 V を VST プラグインとして使用する場合、他の VST プラグインと同じ方法でご使用にな れます。詳細はホスト・アプリケーションのユーザーマニュアルを参照してください。Cubase SX で ご使用になる場合、《デバイス / VST インストゥルメント》メニューを開いてラックの中から ARP2600 V を選択して下さい。

Cubase SX (Windows 版) でアープ 2600 V を起動する

8.2.3 MIDI トラックとの接続

MIDI トラックに入力したノート情報でアープ 2600 V を演奏させるには MIDI トラックを選び、 (Cubase の場合) メニューから使用するトラックの MIDI 出力として「ARP2600 V」を選択します。

Cubase SX
ファイル(E) 編集(E) プロジェクト(P) オーディオ(A) MIDI(M) スコア(S) プ
◆ Cubase SX プロジェクト - ARP2600V.cpr
┃ 10 ▽会唱 14 ∧ カンチフェーダー → □ ▷ ○ ♀ ┣
MIDI 01 THE Marker
100 100 100 100 100 100 100 100
() R W defaut
in:All MIDI Inputs
ARP2600 V
map: Delta 1010 MIDI Microsoft MIDI Fine Place Microsoft MIDI Statute In S
1392/N Microsoft GS wavetable SW Synth [U U U 139-1172/1 C C Seul. Seul. 12/1-1272/1 C C Seul. 12/1-1272/1 C C Seul. 12/1-1272/1 C C Seul. 12/2 C Seul. Seul.

MIDI トラックへの接続方法

MIDI キーボードで演奏された MIDI イベントはシーケンサーを通じてアープ 2600 V に送信されます。 これらの MIDI イベントを録音し、シーケンサーの MIDI エディット機能を使用して編集することも可 能です。

8.2.4 プリセットの保存

セッションを保存すると、プリセットを変更した音色であってもアープ 2600 V で操作した情報は保存されます。例えば、プリセットの《Bass1》をエディットした音色を《Bass2》として保存していなくても、次にその曲を開くとアープ 2600 V のプリセット 《Bass1》を変更した音色が保存されています。

VST 対応のホスト・アプリケーションのメニューからプラグイン・インストゥルメントに関する設定 を保存することも可能です。しかし、特に必要がない場合、アープ 2600 V のコントロール・バーか ら保存することをお奨めします:この方法で保存されたプリセットは他のモード(スタンドアローン、 他のシーケンサー)でも使用でき、独立したファイルとしてエクスポートすることができます。

8.2.5 オートメーション

アープ 2600 V へのオートメーション操作は他の VST プラグインと同様です(詳細については VST シ ーケンサーのプラグイン・オートメーション関連の項目を参照ください)。ただし、プリセットの変 更はオートメーション化することはできません。

8.3 <u>Pro Tools</u>™

8.3.1 インストール

インストール中に表示されるプラグイン・フォーマットの選択画面で RTAS/HTDM protocol を選択してください。

RTAS と **HTDM** プラグインをインストールするフォルダーを選択するアラートが出た場合、次のパス を指定してください:

Mac OS X の場合: System Folder/DAE Folder/Plug-Ins Windows の場合: C:¥Program Files¥Common Files¥Digidesign¥DAE¥Plug-Ins

ご使用のシステムが、HTDM プラグインを使用する有無を問わず、インストール方法は同じになります。

8.3.2 RTAS と HTDM

アープ 2600 V は、Digidesign のドライバ (DAE) と 2 種類のプラグイン・タイプで動作します:

RTAS プラグイン (Real Time Audio Suite) プラグインとして

全ての Pro Tools システムにおいて互換性のあるプラグイン・タイプで、音色生成の全てにかかる負荷を CPU で処理します。そのため、TDM システムのような特定の拡張カードを必要としません。 TDM システムでは、RTAS プラグインは、TDM プラグインよりも前にインサートする必要があります。 また、Aux 入力や、マスター・フェーダーには、TDM プラグインのみが使用可能です。

HTDM プラグイン (Host Time Division Multiplexing) として

TDM システム(少なくとも1枚以上の DSP カードを備えたもの)に、このタイプのプラグインを使用します。HTDM は、TDM プラグインと全く同様に動作します(インサート位置の制限等もありません)。たった1つ TDM プラグインと違う点は、DSP カードを使用せずに CPU を使って処理をおこなうということです。

アープ 2600 V は DSP ベース上での動作には対応しておりません。CPU ベース上でご使用ください。

それぞれのシステムにおけるプラグインの互換性:

	Mac OS X	Windows 98/Me/2000/XP
TDMシステム	RTASおよびHTDM	RTASおよびHTDM
	(stereo in/stereo out)	(stereo in/stereo out)
その他のシステム	RTAS (mono in/stereo out	RTAS (mono in/stereo out
(Pro Tools LE, Free)	および stereo in/stereo out)	および stereo in/stereo out)

8.3.3 インストゥルメントを開く

アープ 2600 V プラグインとして起動するには、他のプラグイン同様オーディオ・トラックに挿入します(下図の例を参照):

🧉 Pro Toe	ols File Ec	dit AudioSu	ite MIDI	Movie Operatio	ins Setu	ps Display	Windows 📟				v 🗆 🗏 4) Sam 23:15
000				testvide					000		testvide	
000									Show/Hide	\$ ShortDelay	=	0
Shuffle Slip	Spot		••		Main Sub	1 1 000 - 0:00.000 -	Start 1 1 0 End 2 1 7 Length 1 0 7	00 97 97	I≻ Audio 1 I+ vodr_lip2 ⊕MIDI 1		√ no insert multi-channel TDM plu	e-in 🕨
			0	at 1 of store w1	Madaa	at 11 000 - #1	Consume.	-	Short Delay II	(stereo)	multi-channel RTAS plu	ig-in 🕨
Show (Hide	Bars:Beats	k		2 🕀	in ange	3 9	4	Autia	Slap Delay II (s	tereo)	TOM also	
J+ Audio 1	Min:Secs	0:00	0:01	0.02 0.02		0:04 0:	0.06	> vocoder	Medium Delay	II (stereo)	multi-mono TDM plug-	in k
IP vedr_lp.2	Time Code	00.00.00.00		00.00.02.00		00.00.04.00	00.0		Extra Long De	stereo) lav II (stereo)	mana mono kristo prog	
	Samples	0	50000	100000	150000	200000	250000		ModularSyster	n (stereo)	1/0	•
	- Tempo	Default: J 1203	20					9 8		10		inin .
8	Markers	000000.000						-		-		
1	Audio 1	1						-		A 1-2	A 3-4 All	1
	RSM	1								A 1-2	A 1-2 1000	
	waveform >	1								31007100	3000 1100	
	Auto: read	1										
	Voice: auto									4100 1005	<100 100> pan >0<	
E	vedr_lp2 =	vocader_kop.21		Annaharra								1
	R S M					******	******					
	waveform >	vocader_loop.2.R		- 1 1	1 .		A . 4			O muto	O mato O Q	
	Auto: read	*****	} }}}}	*****		****	********			rec	1K 9 K	
	Voice: 3000			<u>.</u>						1.1		
									Mix Groups			
		_							0.1. (ALL)			
	Auto: read											
	0010											
n i i i i i i i i i i i i i i i i i i i		-										1
										A bu	A N 6	
Edit Groups 32								MIDI a		vol 0.0	vol 0.0 vol 127	P. Constant
01 (ALL)								MIDI 1+01	1	Audio 1	verdr is 2 MIDL1	1
		0.0	0									Ψ
									-			A V
000		0	N 44			1 1	000 - 🖻	S bars	Ð	~		
System	ctivity											
PCI		pre-	roll	0 0 000 Start	1 1 000	0:0	0.000 - 🐼	4 - 120.0	00			
CPU		post	-roll	Lasoth	21.11.797	all solutions		4 .				
Disk			spart - Pro tous		0.3.122	argraas	agn	-				
TDM Tin	ne Slots Used							»	4			
20 01 2 30	Card #1											
Mix Engine	1	00%										
StereoMixer24	1	9%										
		Inter 1	TO	I GA		the star	A Contraction	L	. 1998a		<u></u>	
		4	4 2	973 2	1 1		())		PRC		NO.	

TDM システム: アープ 2600 V は、ステレオ・トラックに挿入する必要があります。HTDM プラグ インを開くには、TDM のサブメニューから HTDM プラグインを選択します。

その他のシステム: アープ 2600 V は、モノ・オーディオ・トラック(挿入後ステレオになります)、もしくはステレオ・オーディオ・トラックに読み込むことができます。

プラグイン起動後は、マウスやバーチャル・キーボードを使ってアープ 2600 V を演奏することができます。

8.3.4 MIDI トラックとの接続

アープ 2600 V は MIDI トラックのノート情報で演奏することができます。この場合は、使用したい MIDI インターフェースや MIDI チャンネルの設定をアープ 2600 V に関連付けてください。以降、アー プ 2600 V はキーボードを通じてコントロールできます(デバイス接続についての詳細は Pro Tools の マニュアルを参照ください)。

8.3.5 プリセットの保存

ー旦セッションを閉じると、アープ 2600 V はそのときの状態を自動的に保存します。プリセットへの変更などもすべて保存されます。曲を開くと前回保存したときの状態から再開することができます。

Pro Tools の≪ Librarian Menu ≫ は、他のプラグインと同様に使用することができます。しかし、パッ チの保存は、アープ 2600 V のエクスポート機能を使用して保存することをお奨めしています。その 理由は以下の通りです:

- エクスポートしたプリセットは、他のシーケンサーでも使用可能。とりわけ、ユーザー同士のデ ータのやりとりがしやすくなります。
- 今後予定されているアープ 2600 Vのバージョン・アップ後もエクスポートしたパッチを開くことができるため。(上位互換)

8.3.6 Pro Tools におけるオートメーション

オートメーション機能は他の RTAS/HTDM プラグインと同様に機能します(プラグインのオートメーション機能の詳細については、Pro Tools のマニュアルをご参照ください)。プリセットのパッチ変更に関するオートメーションは組むことができません。

8.4 DXi™

アープ 2600 V は、DXi プロトコルとも互換性を持ち、SONAR[™]をはじめとする DXi インストゥルメン トを使用可能なホスト・アプリケーションで使用することができます。

8.4.1 インストール

インストール中に表示されるプラグイン・フォーマットの選択画面で DXI protocol を選択し、インストールが終了するまで画面の指示に従って進めてください。インストールの終了後、アープ 2600 V を DXi インストゥルメントとして使用することが可能になります。

8.4.2 インストゥルメントを開く (SONAR™)

≪ 挿入 »メニュー の中から ≪ DXi »を開き、ARP2600 V を選択します。

挿入の トランスポート(B) ジャ	ンプ(G) トラック(T) ツール(L) オプション(Q)
バンク/パッチチェンジ(B) 拍子/調号チェンジ(M) (へ、テンポチェンジ(D タイム/小節の	000 🛄 🛄 🏹 — — — 🛛 🔣 🖬 🖬 🕍 🖩 🛄 🏥 트 Tee L 💽 🕴
F ₄ マーカー(Β) F11	
コントローラ(©) テンポ(<u>©</u>)	1,,,12,,,13,,
DXi🔮 🕨	ARP2600 V
ReWireデバイス(<u>₩</u>) ・	CS-80∨ k≷ minimoog V
オーディオトラック(<u>A</u>) MIDIトラック(<u>D</u>)	Moog Modular V 2

DXi インストゥルメントを開く

"シンセラック"ウインドウにおいて ARP2600 V のインストゥルメント名をダブルクリックするとア ープ 2600 V のインターフェースが表示され、各種操作を行うことができます。

🚥 SONAR1 - シンセラック	
* * 8	
1 🔤 🔳 ARP2600 V 1 (Cフリセット加速リません) 🗐	MS
↓ ブラヴイン名	

8.4.3 MIDI トラックとの接続

アープ 2600 V が MIDI トラックから出力される情報を受信できるようにするには、SONAR 上でアープ
 2600 V に接続する MIDI トラックを選択し、MIDI 出力先を ARP2600 V に設定してください。

1 🛞 [MIDI 1	M SR 🔊 – 🗆
	(O) FX なし
(till 0)	
[] なし	
o 3-DM1-GM Drums	(Basic -
Ch (ドラムマップ)	✓ ✓ 1-ARP2600 V 1
し 二目 (ドラムマップ)	新規ドラムマップ 🔨 🔹 ▶
	<u> </u>
Z SE (MIDI Z	

MIDI トラックとアープ 2600 Vの接続

MIDI キーボードで演奏された MIDI イベントは SONAR 上のアープ 2600 V に送信されます。もちろん これらの MIDI イベントを記録し、シーケンサー上で MIDI 情報を編集することも可能です。

8.4.4 プリセットの保存

プロジェクトを保存すると、プリセットを変更した音色であってもアープ 2600 V で操作した情報は保存されます。例えば、プリセットの《Bass1》をエディットした音色を《Bass2》として保存していなくても、次にその曲を開くとアープ 2600 V のプリセット 《Bass1》を変更した音色が保存されています。

8.4.5 オートメーション

SONAR でのオートメーションは MIDI メッセージ(コントロール・チェンジ)の受信と記録によって 機能します。アープ 2600 V のスタンドアローン・モードと同様に MIDI イベントをシーケンス・ソフ ト側からコントロールすることが可能です。

8.5 Audio Unit™

8.5.1 Logic Pro の場合

8.5.1.1 インストール

プラグイン・ファイル (コンポーネント・ファイル) はインストール・プログラムによって自動的に インストールされます。 (/ライブラリ/Audio/Plug-Ins/Component/)

8.5.1.2 インストルメントとして起動する

アープ 2600 V を挿入するインストゥルメント・トラックを選択し、そのトラックのミキサー・ウインドウの"I/O"ボタンをクリックします。表示されたメニューを"Stereo -> AU Instrument (またはAudio Unit) -> Arturia -> ARP 2600 V"の順に選択すると Audio Unit インストゥルメントとして起動することができます。

Logic Pro 7 でアープ 2600 V を開く

8.5.1.3 エフェクト・プラグインとして起動する

アープ 2600 V を挿入するインストゥルメント・トラックを選択し、そのトラックのミキサー・ウインドウの"Insert"ボタンをクリックします。表示されたメニューを"Stereo -> AU Instrument(または Audio Unit) -> Arturia -> ARP 2600 V"の順に選択するとエフェクト・プラグインとして起動することができます。

Logic Pro 7 には AU マネージャーが搭載されています。AU マネージャーを起動するには "Logic Pro" メニューから "Preferences -> Start Logic AU Manager"の順に選択してください。

Ś	Logic Pro 7.0.1pr82	27 File	Edit	Audio	Options	Windows	1	Help	
Θ	About Logic Pro							🛗 Untitl	ed
Edit 1	Preferences		•	Globa	al				
	Services		Þ	Audio MIDI.) 				
▼ MIDI	Hide Logic Pro 7.0	.1pr827	жн	Displ	ay				
Qu	Hide Others		₹жн	Score				^ # P	
Tran	Show All			Video)				
Ve Dyn	Quit Logic Pro 7.0.	1pr827	жQ	Autor	mation				
Gate	Delays 0 🔺 6 🕅		inst 2	Initia	lize All Exc	ept Key Co	mma	nds	
	7 🕅	R 🕾 🚛		Start	Logic Setu	p Assistant		_	
R V	💊 I b 🗞 🖬 🔹 🖉	R 🗟 🚛	Inst 4	Start	LOGIC AU N	nanager		_	
	S k. +	R 🗟 🛲	Inst 1	Conti	rol Surface	s			
▼inst :	10 🕅	R 🕾 🚛	Inst 2	Koy	ommande			7-14	
(Audio 0	Dbject) 11	R 🗟 🚛	Inst 3	Rey C	Johnnanus			C.K	
	lcon: 12 M	R 😤 🛤	Inst 4						
Ch	annel: Instrument1 🕈 🔡 🚺		1 Gran	d Piano					

AUマネージャーの起動

AU マネージャーでは、使用可能なプラグインのリストの表示、Logic との互換性、プラグインの使用 /不使用などを設定することができます。

Logic 上でトラブルが発生した場合は、この機能を使用して互換性のチェック等を行ってください。

	Audio Unit Name	Manufacturer	Version	Compatibility	Rescan		
\checkmark	AUBandpass	Apple	1.3.0	passed validation	Rescan		
\checkmark	AUDelay	Apple	1.3.0	passed validation	Rescan		
\checkmark	AUDynamicsProcessor	Apple	1.3.0	passed validation	Rescan		
\checkmark	AUGraphicEQ	Apple	1.3.0	passed validation	Rescan		
\checkmark	AUHighShelfFilter	Apple	1.3.0	passed validation	Rescan		
\checkmark	AUHipass	Apple	1.3.0	passed validation	Rescan		
\checkmark	AULowpass	Apple	1.3.0	passed validation	Rescan		
\checkmark	AULowShelfFilter	Apple	1.3.0	passed validation	Rescan		
\checkmark	AUMatrixReverb	Apple	1.3.0	passed validation	Rescan		
\checkmark	AUMultibandCompressor	Apple	1.3.0	passed validation	Rescan		
\checkmark	AUParametricEQ	Apple	1.3.0	passed validation	Rescan		
\checkmark	AUPeakLimiter	Apple	1.3.0	passed validation	Rescan		
\checkmark	DLSMusicDevice	Apple	1.3.0	passed validation	Rescan		
\checkmark	ARP2600 V	Arturia	1.0.0	passed validation	Rescan		
\checkmark	ARP2600 Vefx	Arturia	1.0.0	passed validation	Rescan		
\checkmark	CS-80V	Arturia	1.2.0	passed validation	Rescan		
\checkmark	minimoog V	Arturia	1.1.0	passed validation	Rescan		
\checkmark	minimoog V Fx	Arturia	1.1.0	passed validation	Rescan		
\checkmark	Moog Modular V 2	Arturia	1.0.0	passed validation	Rescan		
\checkmark	Moog Modular V 2 Fx	Arturia	2.1.0	passed validation	Rescan		
\checkmark	Reaktor	Native Instruments	4.1.2	passed validation	Rescan		
\checkmark	Reaktor FX	Native Instruments	4.1.2	passed validation	Rescan		

AUマネージャー

8.5.2 Digital Performer 4 の場合

8.5.2.1 インストール

プラグイン・ファイル (コンポーネント・ファイル) はインストール・プログラムによって自動的に インストールされます。

8.5.2.2 インストルメントとして起動する

Digital Performer4 のメニュー・バーで「Project>Add Track>Instrument Track」を選択すると、インストールされている Audio Unit インストゥルメントとして起動することができます。

,	Project Studio Setup	Windows	ヘル	プ							
1	Add Track Add Similar Tracks Duplicate Tracks Delete Tracks Modify Conductor Track	► ^₩S ^₩D	Mic Mo Ste Sur Au	di Tra no A reo a rrour x Tra	ack Judio Audio Audio nd Ack	Trac o Trac	k ck		111000 1111000 25-) 41000	☆ 第 M ☆ 第 A ☆ 第 S ^ 第 A	→ ■ # = = = = = = = = = = = = = = = = = =
1	Track Groups Modify Track Groups	Ն⊕C ►	Ins Ma	Instrument Track ト Master Fader Track ^光M						Arturia: CS-80V (stereo) ARP2600 V (stereo)	
	Sequences Chunks Tracks Sequence Editor Mixing Board	↓	3 ' 1	9 1	10	11	12	13	14	15	minimoog V (stereo) Moog Modular V 2 (stereo) Apple: DLSMusicDevice (stereo) Unassigned

Digital Performer4 でアープ 2600 V を開く

アープ 2600 V の起動後、MIDI チャンネルの設定を行います。アープ 2600 V は MIDI トラックのノート情報によって演奏させることができます。この場合は、アープ 2600 V と MIDI トラックとの接続を行う必要があります。

MIDI トラックの出力先をクリックすると接続している他のシンセサイザーと同様に「ARP2600 V」が リストに表示されます。デバイスの MIDI 接続設定に関しては Digital Performer 4 とマニュアルをご参 照ください。

8.5.2.3 エフェクト・プラグインとして起動する

アープ 2600 V はエフェクト・プラグインとして起動することもできます。オーディオ・トラックの ミキサー画面のエフェクト・メニューから "Arturia -> ARP2600V Efx"の順に選択してください。.

8.5.3 プリセットの保存

セッションを保存すると、プリセットを変更した音色であってもアープ 2600 V で操作した情報は保存されます。例えば、プリセットの《Bass1》をエディットした音色を《Bass2》として保存していなくても、次にその曲を開くとアープ 2600 V のプリセット 《Bass1》を変更した音色が保存されています。

このように Logic や Digital Performer のソング保存機能を使用してソングを保存することで音色等の設定を保存することもできますが、パッチの保存はアープ 2600 V のエクスポート機能を使用して保存することをお奨めしています。その理由は以下の通りです:

- 保存されたプリセットが、他のシーケンサーでも使用できるため。とりわけ、ユーザー同士のデ ータのやりとりがしやすくなります。
- 今後予定されているアープ 2600 V のバージョン・アップ後もエクスポートしたパッチを開くことができるため。(上位互換)

8.5.4 オートメーション

オートメーション機能は他の Audio Unit プラグインと同様に機能します(プラグインのオートメーション機能の詳細については、Logic、および Digital Performer のマニュアルをご参照ください)。プリ セットのパッチ変更に関するオートメーションは組むことができません。 ご使用の前に必ずお読みください。

以下は ARP2600 V (アープ 2600 V) を使用するにあたり、Arturia (アートリア) 社が許諾するエンド ユーザー使用許諾契約書を要約したものです。下記をよくお読みになり、本契約に同意された場合の み、本ソフトウエアをご使用になれます。本ソフトウエアの CD-ROM パッケージを開封した時点で、 本契約に同意したことになります。また、実際のライセンスはアートリア社が提供する英文のもの (ユーザーマニュアルの英語版内に記載) となりますので、あらかじめご了承ください。

アートリア アープ 2600 V エンドユーザー使用許諾契約書

1 使用許諾

アートリア社はお客様に対し、非独占的な権利として単一のコンピューターでアープ 2600 V のプロ グラム(以下"ソフトウエア"という)を使用する権利を与えます。また、アートリア社は許諾者に 非明示的に付与した権利のすべてを留保します。

2 所有権

お客様はソフトウエアが記録またはインストールされた媒体の所有権を有します。アートリア社はディスクに記録されたソフトウエアならびに複製に伴って存在するいかなるメディア及び形式で記録されるソフトウエアのすべての所有権を有します。この許諾契約ではオリジナルのソフトウエアそのものを販売するものではありません。

3著作権

ソフトウエア及びマニュアル、パッケージなどの付随物には著作権があります。ソフトウエアの改ざ ん、統合、合併などを含む不正な複製と、付随物の複製は堅く禁じます。このような不法複製がもた らす著作権侵害等のすべての責任は、お客様が負うものとします。

4 使用の制限

お客様は、常に1 台のコンピューターで使用することを前提として、一時的に別のコンピューターに インストールして使用することができます。お客様はネットワークシステムなどを介した複数のコン ピューターに、ソフトウエアをコピーすることはできません。お客様は、ソフトウエアおよびそれに 付随する物を複製して再配布、販売等をおこなうことはできません。お客様はソフトウエアもしくは それに付随する記載物等をもとに、改ざん、修正、リバース・エンジニアリング、逆アセンブル、逆 コンパイル、翻訳などをおこなうことはできません。

5 譲渡の制限

お客様はソフトウエアを譲渡、レンタル、リース、転売、サブライセンス、貸与などの行為を、アー トリア社への書面による許諾無しにおこなうことは出来ません。また、譲渡等によってソフトウエア を取得した場合も、この契約の条件と権限に従うことになります。

限定保証と免責

限定保証

アートリア社は通常の使用下において、購入日より 30 日間、ソフトウエアが記録されたディスクに 瑕疵がないことを保証します。購入日については、領収書の日付をもって購入日の証明といたします。 ソフトウエアのすべての黙示保証についても、購入日より 30 日間に制限されます。黙示の保証の存 続期間に関する制限が認められない地域においては、上記の制限事項が適用されない場合があります。 アートリア社は、すべてのプログラムおよび付随物が述べる内容について、いかなる場合も保証しま せん。プログラムの性能、品質によるすべての危険性はお客様のみが負担します。プログラムに瑕疵 があると判明した場合、お客様が、すべてのサービス、修理または修正に要する全費用を負担します。
賠償

アートリア社が提供する補償はアートリア社の選択により(a)購入代金の返金(b)ディスクの交換 のいずれかになります。お客様がこの補償を受けるためには、アートリア社にソフトウエア購入時の 領収書をそえて商品を返却するものとします。この補償はソフトウエアの悪用、改ざん、誤用または 事故に起因する場合には無効となります。交換されたソフトウエアの補償期間は、最初のソフトウエ アの補償期間か 30 日間のどちらか長いほうになります。

その他の保証の免責

上記の保証はその他すべての保証に代わるもので、黙示の保証および商品性、特定の目的についての 適合性を含み、これに限られません。アートリア社または販売代理店等の代表者またはスタッフによ る、口頭もしくは書面による情報または助言の一切は、あらたな保証を行ったり、保証の範囲を広げ るものではありません。

付随する損害補償の制限

アートリア社は、この商品の使用または使用不可に起因する直接的および間接的な損害(仕事の中断、 損失、その他の商業的損害なども含む)について、アートリア社が当該損害を示唆していた場合にお いても、一切の責任を負いません。地域により、黙示保証期間の限定、間接的または付随的損害に対 する責任の排除について認めていない場合があり、上記の限定保証が適用されない場合があります。 本限定保証は、お客様に特別な法的権利を付与するものですが、地域によりその他の権利も行使する ことができます。

アイデックス音楽総研株式会社取り扱いアートリア社製品の譲渡につきまして

アートリア社製品を譲渡する場合は、書面によるアートリア社への譲渡申請手続きが必要となります。 日本国内におけるアートリア社への譲渡申請手続きはアイデックス音楽総研株式会社がこれを代行い たします(※)

譲渡申請手続きが完了していない場合、アートリア社へのユーザー登録、およびアップデート情報な ど一切のサポートのご提供を行うことができません。

必ず当社ホームページより譲渡申請書をダウンロード後、必要事項を記入の上、アイデックス音楽総 研株式会社まで郵送にてご送付ください。

※日本国内で販売されたアイデックス音楽総研株式会社取り扱いアートリア社製品(日本語版)のみ を対象とさせていただきます。